QBinomial
✖
QBinomial
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
.
- QBinomial automatically threads over lists.
Examples
open allclose allBasic Examples (6)Summary of the most common use cases
Exact evaluation with numbers:

https://wolfram.com/xid/0rtf7pybe-bjr0rh

Plot over a subset of the reals:

https://wolfram.com/xid/0rtf7pybe-8vy2o

Plot over a subset of the complexes:

https://wolfram.com/xid/0rtf7pybe-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0rtf7pybe-fdkkja

Series expansion at Infinity:

https://wolfram.com/xid/0rtf7pybe-20imb

Use FunctionExpand to obtain Gaussian polynomials:

https://wolfram.com/xid/0rtf7pybe-puz0a3

Scope (20)Survey of the scope of standard use cases
Numerical Evaluation (5)

https://wolfram.com/xid/0rtf7pybe-l274ju


https://wolfram.com/xid/0rtf7pybe-wlv0g


https://wolfram.com/xid/0rtf7pybe-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0rtf7pybe-y7k4a


https://wolfram.com/xid/0rtf7pybe-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0rtf7pybe-di5gcr


https://wolfram.com/xid/0rtf7pybe-bq2c6r

Compute the elementwise values of an array:

https://wolfram.com/xid/0rtf7pybe-thgd2

Or compute the matrix QBinomial function using MatrixFunction:

https://wolfram.com/xid/0rtf7pybe-o5jpo

Specific Values (5)
QBinomial for symbolic parameters:

https://wolfram.com/xid/0rtf7pybe-fc9m8o


https://wolfram.com/xid/0rtf7pybe-ojm7m3


https://wolfram.com/xid/0rtf7pybe-di9w9p


https://wolfram.com/xid/0rtf7pybe-e41pf2

Find the minimum of QBinomial[3,2,q]:

https://wolfram.com/xid/0rtf7pybe-f2hrld


https://wolfram.com/xid/0rtf7pybe-dinc59

QBinomial threads elementwise over lists:

https://wolfram.com/xid/0rtf7pybe-d89eov

TraditionalForm formatting:

https://wolfram.com/xid/0rtf7pybe-bn5qfk

Visualization (2)
Plot the QBinomial function for various parameters:

https://wolfram.com/xid/0rtf7pybe-c0x9p4


https://wolfram.com/xid/0rtf7pybe-dbvuei


https://wolfram.com/xid/0rtf7pybe-f2g90r

Function Properties (4)
has both singularities and discontinuities for
and for
:

https://wolfram.com/xid/0rtf7pybe-mdtl3h


https://wolfram.com/xid/0rtf7pybe-mn5jws

is neither non-negative nor non-positive:

https://wolfram.com/xid/0rtf7pybe-84dui

QBinomial is neither convex nor concave:

https://wolfram.com/xid/0rtf7pybe-nclwh8

TraditionalForm formatting:

https://wolfram.com/xid/0rtf7pybe-lzg9qr

Differentiation (2)
The first derivative with respect to n when m=1/2:

https://wolfram.com/xid/0rtf7pybe-krpoah

The first derivative with respect to m when n=1 and q=2:

https://wolfram.com/xid/0rtf7pybe-frvu96

Higher derivatives with respect to m:

https://wolfram.com/xid/0rtf7pybe-z33jv

Plot the higher derivatives with respect to m when n=3 and q=2:

https://wolfram.com/xid/0rtf7pybe-fxwmfc

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0rtf7pybe-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0rtf7pybe-binhar

The Taylor expansion at a generic point:

https://wolfram.com/xid/0rtf7pybe-jwxla7

Generalizations & Extensions (1)Generalized and extended use cases
QBinomial can be applied to a power series:

https://wolfram.com/xid/0rtf7pybe-cyyqa6

Applications (4)Sample problems that can be solved with this function
Explicit combinatorial construction of QBinomial:

https://wolfram.com/xid/0rtf7pybe-d6uz5g

https://wolfram.com/xid/0rtf7pybe-mid1h4


https://wolfram.com/xid/0rtf7pybe-lipq7c

-binomial is a generating function for the sequence in a grid-shading problem:

https://wolfram.com/xid/0rtf7pybe-kpo2xv


https://wolfram.com/xid/0rtf7pybe-bb2br1


https://wolfram.com/xid/0rtf7pybe-clr28t

Elements in the -Pascal triangle satisfy two recurrence relations:

https://wolfram.com/xid/0rtf7pybe-b6lwhk


https://wolfram.com/xid/0rtf7pybe-d01t63

The number of subspaces in the -dimensional vector space over
with prime-power
:

https://wolfram.com/xid/0rtf7pybe-dp25so
Total number of subspaces in three-dimensional vector space over :

https://wolfram.com/xid/0rtf7pybe-ghmbj

Check using recurrence equation for Galois numbers:

https://wolfram.com/xid/0rtf7pybe-g1fvj2


https://wolfram.com/xid/0rtf7pybe-bhlv7y

Properties & Relations (2)Properties of the function, and connections to other functions
Use FunctionExpand and FullSimplify to manipulate expressions containing QBinomial:

https://wolfram.com/xid/0rtf7pybe-cxrac1


https://wolfram.com/xid/0rtf7pybe-jiirg


https://wolfram.com/xid/0rtf7pybe-e8eyv7

Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.
Text
Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.
Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.
CMS
Wolfram Language. 2008. "QBinomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QBinomial.html.
Wolfram Language. 2008. "QBinomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QBinomial.html.
APA
Wolfram Language. (2008). QBinomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QBinomial.html
Wolfram Language. (2008). QBinomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QBinomial.html
BibTeX
@misc{reference.wolfram_2025_qbinomial, author="Wolfram Research", title="{QBinomial}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QBinomial.html}", note=[Accessed: 21-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_qbinomial, organization={Wolfram Research}, title={QBinomial}, year={2008}, url={https://reference.wolfram.com/language/ref/QBinomial.html}, note=[Accessed: 21-June-2025
]}