WOLFRAM

QBinomial
QBinomial

QBinomial[n,m,q]

gives the -binomial coefficient .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • .
  • QBinomial automatically threads over lists.

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Exact evaluation with numbers:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Use FunctionExpand to obtain Gaussian polynomials:

Out[1]=1

Scope  (20)Survey of the scope of standard use cases

Numerical Evaluation  (5)

Evaluate numerically:

Out[1]=1
Out[3]=3

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix QBinomial function using MatrixFunction:

Out[2]=2

Specific Values  (5)

QBinomial for symbolic parameters:

Out[1]=1
Out[2]=2
Out[3]=3

Value at zero:

Out[1]=1

Find the minimum of QBinomial[3,2,q]:

Out[1]=1
Out[2]=2

QBinomial threads elementwise over lists:

Out[1]=1

TraditionalForm formatting:

Visualization  (2)

Plot the QBinomial function for various parameters:

Out[1]=1

Plot the real part of TemplateBox[{3, 2, z}, QBinomial]:

Out[1]=1

Plot the imaginary part of TemplateBox[{3, 2, z}, QBinomial]:

Out[2]=2

Function Properties  (4)

TemplateBox[{1, {1, /, 3}, x}, QBinomial] has both singularities and discontinuities for and for :

Out[1]=1
Out[2]=2

TemplateBox[{1, {1, /, 3}, x}, QBinomial] is neither non-negative nor non-positive:

Out[1]=1

QBinomial is neither convex nor concave:

Out[1]=1

TraditionalForm formatting:

Differentiation  (2)

The first derivative with respect to n when m=1/2:

Out[1]=1

The first derivative with respect to m when n=1 and q=2:

Out[2]=2

Higher derivatives with respect to m:

Out[1]=1

Plot the higher derivatives with respect to m when n=3 and q=2:

Out[2]=2

Series Expansions  (2)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[2]=2

The Taylor expansion at a generic point:

Out[1]=1

Generalizations & Extensions  (1)Generalized and extended use cases

QBinomial can be applied to a power series:

Out[1]=1

Applications  (4)Sample problems that can be solved with this function

Explicit combinatorial construction of QBinomial:

Out[2]=2
Out[3]=3

-binomial is a generating function for the sequence in a grid-shading problem:

Out[1]=1
Out[2]=2

Compare to explicit counting:

Out[3]=3

Elements in the -Pascal triangle satisfy two recurrence relations:

Out[1]=1
Out[2]=2

The number of subspaces in the -dimensional vector space over with prime-power :

Total number of subspaces in three-dimensional vector space over :

Out[2]=2

Check using recurrence equation for Galois numbers:

Out[3]=3
Out[4]=4

Properties & Relations  (2)Properties of the function, and connections to other functions

Use FunctionExpand and FullSimplify to manipulate expressions containing QBinomial:

Out[1]=1

Build series expansions:

Out[1]=1
Out[2]=2
Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.
Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.

Text

Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.

Wolfram Research (2008), QBinomial, Wolfram Language function, https://reference.wolfram.com/language/ref/QBinomial.html.

CMS

Wolfram Language. 2008. "QBinomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QBinomial.html.

Wolfram Language. 2008. "QBinomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QBinomial.html.

APA

Wolfram Language. (2008). QBinomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QBinomial.html

Wolfram Language. (2008). QBinomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QBinomial.html

BibTeX

@misc{reference.wolfram_2025_qbinomial, author="Wolfram Research", title="{QBinomial}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QBinomial.html}", note=[Accessed: 21-June-2025 ]}

@misc{reference.wolfram_2025_qbinomial, author="Wolfram Research", title="{QBinomial}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QBinomial.html}", note=[Accessed: 21-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_qbinomial, organization={Wolfram Research}, title={QBinomial}, year={2008}, url={https://reference.wolfram.com/language/ref/QBinomial.html}, note=[Accessed: 21-June-2025 ]}

@online{reference.wolfram_2025_qbinomial, organization={Wolfram Research}, title={QBinomial}, year={2008}, url={https://reference.wolfram.com/language/ref/QBinomial.html}, note=[Accessed: 21-June-2025 ]}