QGamma

QGamma[z,q]

gives the -gamma function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • for .
  • for .
  • QGamma automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Scope  (25)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix QGamma function using MatrixFunction:

Specific Values  (5)

Values at fixed points:

QGamma has a singularity at x=0:

Evaluate for symbolic x at integer and half-integer parameters:

Evaluate for symbolic q at integer and half-integer parameters:

Find a value of x for which QGamma[x,2]=10:

Visualization  (3)

Plot the QGamma function:

Plot the QGamma as a function of its second parameter q:

Plot the real part of TemplateBox[{z, {1, /, 2}}, QGamma]:

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, QGamma]:

Function Properties  (9)

The real domain of QGamma:

The complex domain:

QGamma threads elementwise over lists:

TemplateBox[{z, q}, QGamma] is not an analytic function:

It has both singularities and discontinuities for and for :

TemplateBox[{z, {1, /, 5}}, QGamma] is neither nonincreasing nor nondecreasing:

TemplateBox[{z, q}, QGamma] is not injective:

TemplateBox[{z, q}, QGamma] is not surjective:

TemplateBox[{z, {1, /, 5}}, QGamma] is neither non-negative nor non-positive:

QGamma is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (2)

The first derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when q=3:

Applications  (2)

deformation of :

-series are building blocks of other -factorial functions:

Properties & Relations  (1)

QGamma does not automatically produce polynomial symbolic answers; use FunctionExpand:

Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.

Text

Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.

CMS

Wolfram Language. 2008. "QGamma." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QGamma.html.

APA

Wolfram Language. (2008). QGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QGamma.html

BibTeX

@misc{reference.wolfram_2024_qgamma, author="Wolfram Research", title="{QGamma}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QGamma.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_qgamma, organization={Wolfram Research}, title={QGamma}, year={2008}, url={https://reference.wolfram.com/language/ref/QGamma.html}, note=[Accessed: 22-November-2024 ]}