WOLFRAM

QGamma[z,q]

gives the -gamma function .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • for .
  • for .
  • QGamma automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Scope  (25)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix QGamma function using MatrixFunction:

Out[2]=2

Specific Values  (5)

Values at fixed points:

Out[1]=1

QGamma has a singularity at x=0:

Out[1]=1

Evaluate for symbolic x at integer and half-integer parameters:

Out[1]=1
Out[2]=2

Evaluate for symbolic q at integer and half-integer parameters:

Out[1]=1
Out[2]=2

Find a value of x for which QGamma[x,2]=10:

Out[1]=1
Out[2]=2

Visualization  (3)

Plot the QGamma function:

Out[1]=1

Plot the QGamma as a function of its second parameter q:

Out[1]=1

Plot the real part of TemplateBox[{z, {1, /, 2}}, QGamma]:

Out[1]=1

Plot the imaginary part of TemplateBox[{z, {1, /, 2}}, QGamma]:

Out[2]=2

Function Properties  (9)

The real domain of QGamma:

Out[1]=1

The complex domain:

Out[2]=2

QGamma threads elementwise over lists:

Out[1]=1

TemplateBox[{z, q}, QGamma] is not an analytic function:

Out[1]=1

It has both singularities and discontinuities for and for :

Out[2]=2
Out[3]=3

TemplateBox[{z, {1, /, 5}}, QGamma] is neither nonincreasing nor nondecreasing:

Out[1]=1

TemplateBox[{z, q}, QGamma] is not injective:

Out[1]=1
Out[2]=2

TemplateBox[{z, q}, QGamma] is not surjective:

Out[1]=1
Out[2]=2

TemplateBox[{z, {1, /, 5}}, QGamma] is neither non-negative nor non-positive:

Out[1]=1

QGamma is neither convex nor concave:

Out[1]=1

TraditionalForm formatting:

Differentiation  (2)

The first derivative with respect to z:

Out[1]=1

Higher derivatives with respect to z:

Out[1]=1

Plot the higher derivatives with respect to z when q=3:

Out[2]=2

Applications  (2)Sample problems that can be solved with this function

deformation of :

Out[1]=1

-series are building blocks of other -factorial functions:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

QGamma does not automatically produce polynomial symbolic answers; use FunctionExpand:

Out[1]=1
Out[2]=2
Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.
Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.

Text

Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.

Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.

CMS

Wolfram Language. 2008. "QGamma." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QGamma.html.

Wolfram Language. 2008. "QGamma." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QGamma.html.

APA

Wolfram Language. (2008). QGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QGamma.html

Wolfram Language. (2008). QGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QGamma.html

BibTeX

@misc{reference.wolfram_2025_qgamma, author="Wolfram Research", title="{QGamma}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QGamma.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_qgamma, author="Wolfram Research", title="{QGamma}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QGamma.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_qgamma, organization={Wolfram Research}, title={QGamma}, year={2008}, url={https://reference.wolfram.com/language/ref/QGamma.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_qgamma, organization={Wolfram Research}, title={QGamma}, year={2008}, url={https://reference.wolfram.com/language/ref/QGamma.html}, note=[Accessed: 29-March-2025 ]}