QGamma
✖
QGamma
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
for
.
for
.
- QGamma automatically threads over lists.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Scope (25)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0wg3pki-l274ju


https://wolfram.com/xid/0wg3pki-cksbl4


https://wolfram.com/xid/0wg3pki-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0wg3pki-y7k4a


https://wolfram.com/xid/0wg3pki-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0wg3pki-di5gcr


https://wolfram.com/xid/0wg3pki-bq2c6r

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0wg3pki-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0wg3pki-thgd2

Or compute the matrix QGamma function using MatrixFunction:

https://wolfram.com/xid/0wg3pki-o5jpo

Specific Values (5)

https://wolfram.com/xid/0wg3pki-c0e21

QGamma has a singularity at x=0:

https://wolfram.com/xid/0wg3pki-vddzg

Evaluate for symbolic x at integer and half-integer parameters:

https://wolfram.com/xid/0wg3pki-b38kb


https://wolfram.com/xid/0wg3pki-jrp92w

Evaluate for symbolic q at integer and half-integer parameters:

https://wolfram.com/xid/0wg3pki-f8a6as


https://wolfram.com/xid/0wg3pki-ex2sop

Find a value of x for which QGamma[x,2]=10:

https://wolfram.com/xid/0wg3pki-f2hrld


https://wolfram.com/xid/0wg3pki-cziv8

Visualization (3)
Plot the QGamma function:

https://wolfram.com/xid/0wg3pki-ecj8m7

Plot the QGamma as a function of its second parameter q:

https://wolfram.com/xid/0wg3pki-24t08


https://wolfram.com/xid/0wg3pki-co5mrt


https://wolfram.com/xid/0wg3pki-lyfghp

Function Properties (9)
The real domain of QGamma:

https://wolfram.com/xid/0wg3pki-24v8l


https://wolfram.com/xid/0wg3pki-de3irc

QGamma threads elementwise over lists:

https://wolfram.com/xid/0wg3pki-bd1knc


https://wolfram.com/xid/0wg3pki-h5x4l2

It has both singularities and discontinuities for and for
:

https://wolfram.com/xid/0wg3pki-mdtl3h


https://wolfram.com/xid/0wg3pki-mn5jws

is neither nonincreasing nor nondecreasing:

https://wolfram.com/xid/0wg3pki-nlz7s


https://wolfram.com/xid/0wg3pki-poz8g


https://wolfram.com/xid/0wg3pki-ctca0g


https://wolfram.com/xid/0wg3pki-hkqec4


https://wolfram.com/xid/0wg3pki-hdm869

is neither non-negative nor non-positive:

https://wolfram.com/xid/0wg3pki-84dui

QGamma is neither convex nor concave:

https://wolfram.com/xid/0wg3pki-8kku21

TraditionalForm formatting:

https://wolfram.com/xid/0wg3pki-b9cig

Differentiation (2)
The first derivative with respect to z:

https://wolfram.com/xid/0wg3pki-krpoah

Higher derivatives with respect to z:

https://wolfram.com/xid/0wg3pki-z33jv

Plot the higher derivatives with respect to z when q=3:

https://wolfram.com/xid/0wg3pki-fxwmfc

Applications (2)Sample problems that can be solved with this function
Properties & Relations (1)Properties of the function, and connections to other functions
QGamma does not automatically produce polynomial symbolic answers; use FunctionExpand:

https://wolfram.com/xid/0wg3pki-eqz37o


https://wolfram.com/xid/0wg3pki-gy0fl9

Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.
Text
Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.
Wolfram Research (2008), QGamma, Wolfram Language function, https://reference.wolfram.com/language/ref/QGamma.html.
CMS
Wolfram Language. 2008. "QGamma." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QGamma.html.
Wolfram Language. 2008. "QGamma." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/QGamma.html.
APA
Wolfram Language. (2008). QGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QGamma.html
Wolfram Language. (2008). QGamma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/QGamma.html
BibTeX
@misc{reference.wolfram_2025_qgamma, author="Wolfram Research", title="{QGamma}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/QGamma.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_qgamma, organization={Wolfram Research}, title={QGamma}, year={2008}, url={https://reference.wolfram.com/language/ref/QGamma.html}, note=[Accessed: 29-March-2025
]}