Regularization
✖
Regularization
Details

- Regularization affects only results for divergent sums and products.
- The following settings can be used to specify regularization procedures for sums of the form
:
-
"Abel" "Borel" "Cesaro" "Dirichlet" - For alternating sums
, the setting "Euler" gives
.
- The following setting can be used to specify a regularization procedure for products
:
-
"Dirichlet" - Regularization->None specifies that no regularization should be used.
- For multiple sums and products, the same regularization is by default used for each variable.
- Regularization->{reg1,reg2,…} specifies regularization regi for the i
variable.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
The following sum does not converge:

https://wolfram.com/xid/0e7preua-fvzgow


Using Abel regularization will produce a finite value:

https://wolfram.com/xid/0e7preua-zftb8

In this case the Abel-regularized sum does not exist:

https://wolfram.com/xid/0e7preua-fzmo8

However, the stronger Borel regularization produces a finite value:

https://wolfram.com/xid/0e7preua-cl0k3n

A regularized value of a divergent product:

https://wolfram.com/xid/0e7preua-frnkaa

Scope (5)Survey of the scope of standard use cases
Apply Abel regularization to sum a divergent polynomial-exponential series:

https://wolfram.com/xid/0e7preua-doy2x

Use Borel regularization to sum a divergent hypergeometric series:

https://wolfram.com/xid/0e7preua-wu0vj

Apply Cesaro regularization to sum a divergent trigonometric series:

https://wolfram.com/xid/0e7preua-csg0gt

Sum a divergent logarithmic series using Dirichlet regularization:

https://wolfram.com/xid/0e7preua-naw27j

Apply Euler regularization to sum a divergent geometric series:

https://wolfram.com/xid/0e7preua-cpn4vn

Wolfram Research (2008), Regularization, Wolfram Language function, https://reference.wolfram.com/language/ref/Regularization.html.
Text
Wolfram Research (2008), Regularization, Wolfram Language function, https://reference.wolfram.com/language/ref/Regularization.html.
Wolfram Research (2008), Regularization, Wolfram Language function, https://reference.wolfram.com/language/ref/Regularization.html.
CMS
Wolfram Language. 2008. "Regularization." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Regularization.html.
Wolfram Language. 2008. "Regularization." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Regularization.html.
APA
Wolfram Language. (2008). Regularization. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Regularization.html
Wolfram Language. (2008). Regularization. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Regularization.html
BibTeX
@misc{reference.wolfram_2025_regularization, author="Wolfram Research", title="{Regularization}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Regularization.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_regularization, organization={Wolfram Research}, title={Regularization}, year={2008}, url={https://reference.wolfram.com/language/ref/Regularization.html}, note=[Accessed: 29-March-2025
]}