WOLFRAM

SumConvergence
SumConvergence

Updatedshow changeshide changes

gives conditions for the sum to be convergent.

SumConvergence[f,{n1,n2,}]

gives conditions for the multiple sum to be convergent.

SumConvergence[f,{n,a,}]

gives conditions for the sum to be convergent on the interval .

SumConvergence[f,{n,a,},,{m,b,}]

gives conditions for the multiple sum to be convergent.

Details and Options

  • The following options can be given:
  • Assumptions$Assumptionsassumptions to make about parameters
    Direction1direction of summation
    Method Automaticmethod to use for convergence testing
  • Possible values for Method include:
  • "IntegralTest"the integral test
    "RaabeTest"Raabe's test
    "RatioTest"D'Alembert ratio test
    "RootTest"Cauchy root test
  • With the default setting Method->Automatic, a number of additional tests specific to different classes of sequences are used.
  • For multiple sums, convergence tests are performed for each independent variable.

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

Test for convergence of the sum :

Out[1]=1

Test the convergence of :

Out[2]=2

Find the condition for convergence of :

Out[1]=1

Test for convergence of the sum :

Out[1]=1
Out[2]=2

Find the conditions for convergence of :

Out[1]=1

Scope  (16)Survey of the scope of standard use cases

Numerical Sums  (8)

Exponential or geometric sums:

Out[1]=1
Out[2]=2

Plot the partial sums:

Out[3]=3

Polynomial exponential sums:

Out[1]=1
Out[2]=2
Out[3]=3

Rational sums:

Out[1]=1
Out[2]=2

Convergence picture:

Out[3]=3

Special functions:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Piecewise functions:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Slowly converging sums in the AbelDini scale:

Out[1]=1
Out[2]=2
Out[3]=3

Alternating sums:

Out[1]=1
Out[2]=2
Out[3]=3

Complex-valued sums:

Out[1]=1
Out[2]=2
Out[3]=3

Parametric Sums  (6)

Exponential or geometric series:

Out[1]=1
Out[2]=2

Parameter region for convergence:

Out[3]=3

Power series:

Out[1]=1
Out[2]=2

The convergence region for :

Out[1]=1
Out[2]=2

Combined series:

Out[1]=1
Out[2]=2

Piecewise sums:

Out[1]=1
Out[2]=2

Assuming z=u+ v to be complex:

Out[3]=3

A multivariate sum:

Out[1]=1
Out[2]=2

Convergence on Intervals  (2)

Test the convergence of on different intervals:

Out[1]=1
Out[2]=2
Out[3]=3

Test the convergence of a parametric sum on different intervals:

Out[1]=1
Out[2]=2
Out[3]=3

Options  (10)Common values & functionality for each option

Method  (10)

Test the convergence of using the ratio test:

Out[1]=1

Test the convergence of using the ratio test:

Out[1]=1

In this case the ratio test is inconclusive:

Out[1]=1

Test the convergence of using the root test:

Out[1]=1

Test the convergence of using the root test:

Out[1]=1

In this case the root test is inconclusive:

Out[1]=1

The Raabe test works well for rational functions:

Out[1]=1
Out[2]=2
Out[3]=3

In this case the Raabe test is inconclusive:

Out[4]=4

Test the convergence of using the integral test:

Out[1]=1

Test the convergence of using the integral test:

Out[1]=1

In this case the integral test is inconclusive:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Find the radius of convergence of a power series:

Out[1]=1
Out[1]=1

Find the interval of convergence for a real power series:

Out[1]=1

As a real power series, this converges on the interval [-3,3):

Out[2]=2

Prove convergence of Ramanujan's formula for :

Out[1]=1

Sum it:

Out[2]=2

Properties & Relations  (4)Properties of the function, and connections to other functions

Convergence properties are not affected by multiplication of constants:

Out[1]=1

Convergence is not affected by translating arguments:

Out[1]=1

SumConvergence is automatically called by Sum:

Out[1]=1
Out[2]=2

Many conditions generated by Sum are in effect convergence conditions:

Out[3]=3
Out[4]=4

With the setting VerifyConvergence->False, typically a regularized value is returned:

Out[5]=5

SumConvergence is used in sum transforms such as ZTransform:

Out[1]=1
Out[2]=2

GeneratingFunction:

Out[3]=3
Out[4]=4

ExponentialGeneratingFunction:

Out[5]=5
Out[6]=6

FourierSequenceTransform:

Out[7]=7
Out[8]=8

Neat Examples  (1)Surprising or curious use cases

Conditionally convergent periodic sums:

Out[2]=2
Out[3]=3
Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).
Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).

Text

Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).

Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).

CMS

Wolfram Language. 2008. "SumConvergence." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/SumConvergence.html.

Wolfram Language. 2008. "SumConvergence." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/SumConvergence.html.

APA

Wolfram Language. (2008). SumConvergence. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SumConvergence.html

Wolfram Language. (2008). SumConvergence. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SumConvergence.html

BibTeX

@misc{reference.wolfram_2025_sumconvergence, author="Wolfram Research", title="{SumConvergence}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/SumConvergence.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_sumconvergence, author="Wolfram Research", title="{SumConvergence}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/SumConvergence.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_sumconvergence, organization={Wolfram Research}, title={SumConvergence}, year={2025}, url={https://reference.wolfram.com/language/ref/SumConvergence.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_sumconvergence, organization={Wolfram Research}, title={SumConvergence}, year={2025}, url={https://reference.wolfram.com/language/ref/SumConvergence.html}, note=[Accessed: 29-March-2025 ]}