SumConvergence
✖
SumConvergence
Details and Options

- The following options can be given:
-
Assumptions $Assumptions assumptions to make about parameters Direction 1 direction of summation Method Automatic method to use for convergence testing - Possible values for Method include:
-
"IntegralTest" the integral test "RaabeTest" Raabe's test "RatioTest" D'Alembert ratio test "RootTest" Cauchy root test - With the default setting Method->Automatic, a number of additional tests specific to different classes of sequences are used.
- For multiple sums, convergence tests are performed for each independent variable.
Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Test for convergence of the sum :

https://wolfram.com/xid/0dczi5kbwbe0-c1vet4


https://wolfram.com/xid/0dczi5kbwbe0-etel5q

Find the condition for convergence of :

https://wolfram.com/xid/0dczi5kbwbe0-cu8qnm

Test for convergence of the sum :

https://wolfram.com/xid/0dczi5kbwbe0-n63cu8


https://wolfram.com/xid/0dczi5kbwbe0-l4rbl

Find the conditions for convergence of :

https://wolfram.com/xid/0dczi5kbwbe0-pwc8dd

Scope (16)Survey of the scope of standard use cases
Numerical Sums (8)
Exponential or geometric sums:

https://wolfram.com/xid/0dczi5kbwbe0-dyjp3h


https://wolfram.com/xid/0dczi5kbwbe0-e1xeg3


https://wolfram.com/xid/0dczi5kbwbe0-bu29o


https://wolfram.com/xid/0dczi5kbwbe0-ezajut


https://wolfram.com/xid/0dczi5kbwbe0-lxetf


https://wolfram.com/xid/0dczi5kbwbe0-cw6l87


https://wolfram.com/xid/0dczi5kbwbe0-kwwl5d


https://wolfram.com/xid/0dczi5kbwbe0-clb72l


https://wolfram.com/xid/0dczi5kbwbe0-eoy08d


https://wolfram.com/xid/0dczi5kbwbe0-ma1e3t


https://wolfram.com/xid/0dczi5kbwbe0-hwkxs


https://wolfram.com/xid/0dczi5kbwbe0-ec33kz


https://wolfram.com/xid/0dczi5kbwbe0-4ktai


https://wolfram.com/xid/0dczi5kbwbe0-fc3uot


https://wolfram.com/xid/0dczi5kbwbe0-cqabea


https://wolfram.com/xid/0dczi5kbwbe0-cul2fe


https://wolfram.com/xid/0dczi5kbwbe0-usgli

Slowly converging sums in the Abel–Dini scale:

https://wolfram.com/xid/0dczi5kbwbe0-fdp34p


https://wolfram.com/xid/0dczi5kbwbe0-fqfqaj


https://wolfram.com/xid/0dczi5kbwbe0-dtwl00


https://wolfram.com/xid/0dczi5kbwbe0-4of3u


https://wolfram.com/xid/0dczi5kbwbe0-7fqh7


https://wolfram.com/xid/0dczi5kbwbe0-ejaw00


https://wolfram.com/xid/0dczi5kbwbe0-eqcww1


https://wolfram.com/xid/0dczi5kbwbe0-174ju


https://wolfram.com/xid/0dczi5kbwbe0-f8ag6s

Parametric Sums (6)
Exponential or geometric series:

https://wolfram.com/xid/0dczi5kbwbe0-d6jwn


https://wolfram.com/xid/0dczi5kbwbe0-99t9n

Parameter region for convergence:

https://wolfram.com/xid/0dczi5kbwbe0-bg7t6f


https://wolfram.com/xid/0dczi5kbwbe0-jnb4im


https://wolfram.com/xid/0dczi5kbwbe0-dtdyst


https://wolfram.com/xid/0dczi5kbwbe0-bdx3fh


https://wolfram.com/xid/0dczi5kbwbe0-bazhqg


https://wolfram.com/xid/0dczi5kbwbe0-kbsor2


https://wolfram.com/xid/0dczi5kbwbe0-h7mf7j


https://wolfram.com/xid/0dczi5kbwbe0-dzhaqa


https://wolfram.com/xid/0dczi5kbwbe0-oz525y

Assuming z=u+ v to be complex:

https://wolfram.com/xid/0dczi5kbwbe0-bimlvy


https://wolfram.com/xid/0dczi5kbwbe0-enrjmh


https://wolfram.com/xid/0dczi5kbwbe0-bmm5vg

Convergence on Intervals (2)
Test the convergence of on different intervals:

https://wolfram.com/xid/0dczi5kbwbe0-btd3if


https://wolfram.com/xid/0dczi5kbwbe0-il5bzn


https://wolfram.com/xid/0dczi5kbwbe0-hti5tk

Test the convergence of a parametric sum on different intervals:

https://wolfram.com/xid/0dczi5kbwbe0-hf2p7k


https://wolfram.com/xid/0dczi5kbwbe0-cd5xw9


https://wolfram.com/xid/0dczi5kbwbe0-ghjs6a

Options (10)Common values & functionality for each option
Method (10)
Test the convergence of using the ratio test:

https://wolfram.com/xid/0dczi5kbwbe0-eypfh5

Test the convergence of using the ratio test:

https://wolfram.com/xid/0dczi5kbwbe0-tqf69

In this case the ratio test is inconclusive:

https://wolfram.com/xid/0dczi5kbwbe0-2x2lm

Test the convergence of using the root test:

https://wolfram.com/xid/0dczi5kbwbe0-h16r6a

Test the convergence of using the root test:

https://wolfram.com/xid/0dczi5kbwbe0-bct9ub

In this case the root test is inconclusive:

https://wolfram.com/xid/0dczi5kbwbe0-bw3dpp

The Raabe test works well for rational functions:

https://wolfram.com/xid/0dczi5kbwbe0-d9314m


https://wolfram.com/xid/0dczi5kbwbe0-cafs6g


https://wolfram.com/xid/0dczi5kbwbe0-erz0cz

In this case the Raabe test is inconclusive:

https://wolfram.com/xid/0dczi5kbwbe0-j0xmsf

Test the convergence of using the integral test:

https://wolfram.com/xid/0dczi5kbwbe0-cwsmkp

Test the convergence of using the integral test:

https://wolfram.com/xid/0dczi5kbwbe0-0nm8g

In this case the integral test is inconclusive:

https://wolfram.com/xid/0dczi5kbwbe0-c7n6eb

Applications (3)Sample problems that can be solved with this function
Find the radius of convergence of a power series:

https://wolfram.com/xid/0dczi5kbwbe0-dd789c


https://wolfram.com/xid/0dczi5kbwbe0-gcl8d9

Find the interval of convergence for a real power series:

https://wolfram.com/xid/0dczi5kbwbe0-nbikk

As a real power series, this converges on the interval [-3,3):

https://wolfram.com/xid/0dczi5kbwbe0-b2j8y2

Prove convergence of Ramanujan's formula for :

https://wolfram.com/xid/0dczi5kbwbe0-khp1q


https://wolfram.com/xid/0dczi5kbwbe0-htqump

Properties & Relations (4)Properties of the function, and connections to other functions
Convergence properties are not affected by multiplication of constants:

https://wolfram.com/xid/0dczi5kbwbe0-jkc0iz

Convergence is not affected by translating arguments:

https://wolfram.com/xid/0dczi5kbwbe0-kbcl13

SumConvergence is automatically called by Sum:

https://wolfram.com/xid/0dczi5kbwbe0-c05zy7


https://wolfram.com/xid/0dczi5kbwbe0-dh6nxx

Many conditions generated by Sum are in effect convergence conditions:

https://wolfram.com/xid/0dczi5kbwbe0-eparh


https://wolfram.com/xid/0dczi5kbwbe0-9c5nv

With the setting VerifyConvergence->False, typically a regularized value is returned:

https://wolfram.com/xid/0dczi5kbwbe0-bo5xgi

SumConvergence is used in sum transforms such as ZTransform:

https://wolfram.com/xid/0dczi5kbwbe0-fnpvhk


https://wolfram.com/xid/0dczi5kbwbe0-bxe6pt


https://wolfram.com/xid/0dczi5kbwbe0-q4rny3


https://wolfram.com/xid/0dczi5kbwbe0-iizen3

ExponentialGeneratingFunction:

https://wolfram.com/xid/0dczi5kbwbe0-d9gqo7


https://wolfram.com/xid/0dczi5kbwbe0-bu7gfj


https://wolfram.com/xid/0dczi5kbwbe0-bbvqpz


https://wolfram.com/xid/0dczi5kbwbe0-gesdws

Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).
Text
Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).
Wolfram Research (2008), SumConvergence, Wolfram Language function, https://reference.wolfram.com/language/ref/SumConvergence.html (updated 2025).
CMS
Wolfram Language. 2008. "SumConvergence." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/SumConvergence.html.
Wolfram Language. 2008. "SumConvergence." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/SumConvergence.html.
APA
Wolfram Language. (2008). SumConvergence. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SumConvergence.html
Wolfram Language. (2008). SumConvergence. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SumConvergence.html
BibTeX
@misc{reference.wolfram_2025_sumconvergence, author="Wolfram Research", title="{SumConvergence}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/SumConvergence.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_sumconvergence, organization={Wolfram Research}, title={SumConvergence}, year={2025}, url={https://reference.wolfram.com/language/ref/SumConvergence.html}, note=[Accessed: 29-March-2025
]}