WOLFRAM

gives the RiemannSiegel function TemplateBox[{t}, RiemannSiegelTheta].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • TemplateBox[{t}, RiemannSiegelTheta]=Im(TemplateBox[{{{1, /, 4}, +, {{(, {ⅈ,  , t}, )}, /, 2}}}, LogGamma])-t/2log pi for real .
  • TemplateBox[{t}, RiemannSiegelTheta] arises in the study of the Riemann zeta function on the critical line. It is closely related to the number of zeros of TemplateBox[{{{1, /, 2}, +, {ⅈ,  , u}}}, Zeta] for .
  • TemplateBox[{t}, RiemannSiegelTheta] is an analytic function of except for branch cuts on the imaginary axis running from to .
  • For certain special arguments, RiemannSiegelTheta automatically evaluates to exact values.
  • RiemannSiegelTheta can be evaluated to arbitrary numerical precision.
  • RiemannSiegelTheta automatically threads over lists.
  • RiemannSiegelTheta can be used with Interval and CenteredInterval objects. »

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Series expansion at a singular point:

Out[1]=1

Scope  (28)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number inputs:

Out[1]=1
Out[2]=2

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Out[1]=1
Out[2]=2

Or compute average-case statistical intervals using Around:

Out[3]=3

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix RiemannSiegelTheta function using MatrixFunction:

Out[2]=2

Specific Values  (2)

Values at zero:

Out[1]=1

Find the positive minimum of RiemannSiegelTheta[x]:

Out[1]=1
Out[2]=2

Visualization  (2)

Plot the RiemannSiegelTheta:

Out[1]=1

Plot the real part of the RiemannSiegelTheta function:

Out[1]=1

Plot the imaginary part of the RiemannSiegelTheta function:

Out[2]=2

Function Properties  (11)

RiemannSiegelTheta is defined for all real values:

Out[1]=1

Complex domain:

Out[2]=2

Function range of RiemannSiegelTheta:

Out[1]=1

RiemannSiegelTheta threads elementwise over lists:

Out[1]=1

RiemannSiegelTheta is an analytic function of x:

Out[1]=1

RiemannSiegelTheta is non-increasing in a specific range:

Out[1]=1

RiemannSiegelTheta is not injective:

Out[1]=1
Out[2]=2

RiemannSiegelTheta is surjective:

Out[1]=1
Out[2]=2

RiemannSiegelTheta is neither non-negative nor non-positive:

Out[1]=1

RiemannSiegelTheta has no singularities or discontinuities:

Out[1]=1
Out[2]=2

RiemannSiegelTheta is neither convex nor concave:

Out[1]=1

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to :

Out[1]=1

Higher derivatives with respect to :

Out[1]=1

Plot the higher derivatives with respect to :

Out[2]=2

Formula for the ^(th) derivative with respect to :

Out[1]=1

Series Expansions  (4)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[2]=2

Find the series expansion at Infinity:

Out[1]=1

Find the series expansion for an arbitrary symbolic direction :

Out[1]=1

Taylor expansion at a generic point:

Out[1]=1

Generalizations & Extensions  (2)Generalized and extended use cases

Series expansion at the origin:

Out[1]=1

Series expansion at a branch point:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Plot real and imaginary parts over the complex plane:

Out[1]=1

Show interlacing of the roots of Sin[RiemannSiegelTheta[t]] and RiemannSiegelZ[t]:

Out[1]=1

Compute Gram points:

Show good Gram points, where RiemannSiegelZ changes sign for consecutive points:

Out[2]=2

Show a bad Gram point:

Out[3]=3

Properties & Relations  (3)Properties of the function, and connections to other functions

RiemannSiegelTheta is related to LogGamma:

Out[1]=1
Out[2]=2

RiemannSiegelZ can be expressed in terms of RiemannSiegelTheta and Zeta:

Out[1]=1
Out[2]=2

Numerically find a root of a transcendental equation:

Out[1]=1

Possible Issues  (2)Common pitfalls and unexpected behavior

A larger setting for $MaxExtraPrecision might be needed:

Out[1]=1
Out[2]=2

Machine-number inputs can give highprecision results:

Out[1]=1
Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Riemann surface of RiemannSiegelTheta:

Out[1]=1
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).

Text

Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).

Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).

CMS

Wolfram Language. 1991. "RiemannSiegelTheta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html.

Wolfram Language. 1991. "RiemannSiegelTheta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html.

APA

Wolfram Language. (1991). RiemannSiegelTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html

Wolfram Language. (1991). RiemannSiegelTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html

BibTeX

@misc{reference.wolfram_2025_riemannsiegeltheta, author="Wolfram Research", title="{RiemannSiegelTheta}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}", note=[Accessed: 08-June-2025 ]}

@misc{reference.wolfram_2025_riemannsiegeltheta, author="Wolfram Research", title="{RiemannSiegelTheta}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}", note=[Accessed: 08-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_riemannsiegeltheta, organization={Wolfram Research}, title={RiemannSiegelTheta}, year={2023}, url={https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}, note=[Accessed: 08-June-2025 ]}

@online{reference.wolfram_2025_riemannsiegeltheta, organization={Wolfram Research}, title={RiemannSiegelTheta}, year={2023}, url={https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}, note=[Accessed: 08-June-2025 ]}