RiemannSiegelTheta
gives the Riemann–Siegel function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- for real .
- arises in the study of the Riemann zeta function on the critical line. It is closely related to the number of zeros of for .
- is an analytic function of except for branch cuts on the imaginary axis running from to .
- For certain special arguments, RiemannSiegelTheta automatically evaluates to exact values.
- RiemannSiegelTheta can be evaluated to arbitrary numerical precision.
- RiemannSiegelTheta automatically threads over lists.
- RiemannSiegelTheta can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion at Infinity:
Scope (28)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix RiemannSiegelTheta function using MatrixFunction:
Specific Values (2)
Visualization (2)
Plot the RiemannSiegelTheta:
Plot the real part of the RiemannSiegelTheta function:
Plot the imaginary part of the RiemannSiegelTheta function:
Function Properties (11)
RiemannSiegelTheta is defined for all real values:
Function range of RiemannSiegelTheta:
RiemannSiegelTheta threads elementwise over lists:
RiemannSiegelTheta is an analytic function of x:
RiemannSiegelTheta is non-increasing in a specific range:
RiemannSiegelTheta is not injective:
RiemannSiegelTheta is surjective:
RiemannSiegelTheta is neither non-negative nor non-positive:
RiemannSiegelTheta has no singularities or discontinuities:
RiemannSiegelTheta is neither convex nor concave:
TraditionalForm formatting:
Differentiation (3)
Generalizations & Extensions (2)
Series expansion at the origin:
Series expansion at a branch point:
Applications (3)
Plot real and imaginary parts over the complex plane:
Show interlacing of the roots of Sin[RiemannSiegelTheta[t]] and RiemannSiegelZ[t]:
Compute Gram points:
Show good Gram points, where RiemannSiegelZ changes sign for consecutive points:
Properties & Relations (3)
RiemannSiegelTheta is related to LogGamma:
RiemannSiegelZ can be expressed in terms of RiemannSiegelTheta and Zeta:
Numerically find a root of a transcendental equation:
Possible Issues (2)
A larger setting for $MaxExtraPrecision might be needed:
Machine-number inputs can give high‐precision results:
Neat Examples (1)
Riemann surface of RiemannSiegelTheta:
Text
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).
CMS
Wolfram Language. 1991. "RiemannSiegelTheta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html.
APA
Wolfram Language. (1991). RiemannSiegelTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html