RiemannSiegelTheta
✖
RiemannSiegelTheta
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
for real
.
arises in the study of the Riemann zeta function on the critical line. It is closely related to the number of zeros of
for
.
is an analytic function of
except for branch cuts on the imaginary axis running from
to
.
- For certain special arguments, RiemannSiegelTheta automatically evaluates to exact values.
- RiemannSiegelTheta can be evaluated to arbitrary numerical precision.
- RiemannSiegelTheta automatically threads over lists.
- RiemannSiegelTheta can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0bh1pt72t733dy-g0m

Plot over a subset of the reals:

https://wolfram.com/xid/0bh1pt72t733dy-mc1bmz

Plot over a subset of the complexes:

https://wolfram.com/xid/0bh1pt72t733dy-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0bh1pt72t733dy-fdkkja

Series expansion at Infinity:

https://wolfram.com/xid/0bh1pt72t733dy-20imb

Series expansion at a singular point:

https://wolfram.com/xid/0bh1pt72t733dy-d2klx1

Scope (28)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0bh1pt72t733dy-l274ju


https://wolfram.com/xid/0bh1pt72t733dy-cksbl4


https://wolfram.com/xid/0bh1pt72t733dy-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0bh1pt72t733dy-y7k4a


https://wolfram.com/xid/0bh1pt72t733dy-hfml09


https://wolfram.com/xid/0bh1pt72t733dy-dm5qi7

Evaluate efficiently at high precision:

https://wolfram.com/xid/0bh1pt72t733dy-di5gcr


https://wolfram.com/xid/0bh1pt72t733dy-bq2c6r

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0bh1pt72t733dy-hgrk6b


https://wolfram.com/xid/0bh1pt72t733dy-f3aswz

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0bh1pt72t733dy-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0bh1pt72t733dy-thgd2

Or compute the matrix RiemannSiegelTheta function using MatrixFunction:

https://wolfram.com/xid/0bh1pt72t733dy-o5jpo

Specific Values (2)

https://wolfram.com/xid/0bh1pt72t733dy-bmqd0y

Find the positive minimum of RiemannSiegelTheta[x]:

https://wolfram.com/xid/0bh1pt72t733dy-f2hrld


https://wolfram.com/xid/0bh1pt72t733dy-en247

Visualization (2)
Plot the RiemannSiegelTheta:

https://wolfram.com/xid/0bh1pt72t733dy-b1j98m

Plot the real part of the RiemannSiegelTheta function:

https://wolfram.com/xid/0bh1pt72t733dy-fjwo7k

Plot the imaginary part of the RiemannSiegelTheta function:

https://wolfram.com/xid/0bh1pt72t733dy-hgici2

Function Properties (11)
RiemannSiegelTheta is defined for all real values:

https://wolfram.com/xid/0bh1pt72t733dy-iuvryv


https://wolfram.com/xid/0bh1pt72t733dy-de3irc

Function range of RiemannSiegelTheta:

https://wolfram.com/xid/0bh1pt72t733dy-evf2yr

RiemannSiegelTheta threads elementwise over lists:

https://wolfram.com/xid/0bh1pt72t733dy-ha1wwm

RiemannSiegelTheta is an analytic function of x:

https://wolfram.com/xid/0bh1pt72t733dy-h5x4l2

RiemannSiegelTheta is non-increasing in a specific range:

https://wolfram.com/xid/0bh1pt72t733dy-bzgp6n

RiemannSiegelTheta is not injective:

https://wolfram.com/xid/0bh1pt72t733dy-gi38d7


https://wolfram.com/xid/0bh1pt72t733dy-ctca0g

RiemannSiegelTheta is surjective:

https://wolfram.com/xid/0bh1pt72t733dy-bsiemi


https://wolfram.com/xid/0bh1pt72t733dy-dvezyb

RiemannSiegelTheta is neither non-negative nor non-positive:

https://wolfram.com/xid/0bh1pt72t733dy-84dui

RiemannSiegelTheta has no singularities or discontinuities:

https://wolfram.com/xid/0bh1pt72t733dy-mdtl3h


https://wolfram.com/xid/0bh1pt72t733dy-mn5jws

RiemannSiegelTheta is neither convex nor concave:

https://wolfram.com/xid/0bh1pt72t733dy-kdss3

TraditionalForm formatting:

https://wolfram.com/xid/0bh1pt72t733dy-dij3jt

Differentiation (3)
First derivative with respect to :

https://wolfram.com/xid/0bh1pt72t733dy-krpoah

Higher derivatives with respect to :

https://wolfram.com/xid/0bh1pt72t733dy-z33jv

Plot the higher derivatives with respect to :

https://wolfram.com/xid/0bh1pt72t733dy-fxwmfc

Formula for the derivative with respect to
:

https://wolfram.com/xid/0bh1pt72t733dy-cb5zgj

Series Expansions (4)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0bh1pt72t733dy-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0bh1pt72t733dy-binhar

Find the series expansion at Infinity:

https://wolfram.com/xid/0bh1pt72t733dy-syq

Find the series expansion for an arbitrary symbolic direction :

https://wolfram.com/xid/0bh1pt72t733dy-t5t

Taylor expansion at a generic point:

https://wolfram.com/xid/0bh1pt72t733dy-jwxla7

Generalizations & Extensions (2)Generalized and extended use cases
Series expansion at the origin:

https://wolfram.com/xid/0bh1pt72t733dy

Series expansion at a branch point:

https://wolfram.com/xid/0bh1pt72t733dy

Applications (3)Sample problems that can be solved with this function
Plot real and imaginary parts over the complex plane:

https://wolfram.com/xid/0bh1pt72t733dy

Show interlacing of the roots of Sin[RiemannSiegelTheta[t]] and RiemannSiegelZ[t]:

https://wolfram.com/xid/0bh1pt72t733dy

Compute Gram points:

https://wolfram.com/xid/0bh1pt72t733dy-kfiebu
Show good Gram points, where RiemannSiegelZ changes sign for consecutive points:

https://wolfram.com/xid/0bh1pt72t733dy-cxhn9k


https://wolfram.com/xid/0bh1pt72t733dy-vrlwg

Properties & Relations (3)Properties of the function, and connections to other functions
RiemannSiegelTheta is related to LogGamma:

https://wolfram.com/xid/0bh1pt72t733dy-d0afjz


https://wolfram.com/xid/0bh1pt72t733dy-fo61ya

RiemannSiegelZ can be expressed in terms of RiemannSiegelTheta and Zeta:

https://wolfram.com/xid/0bh1pt72t733dy-imsrup


https://wolfram.com/xid/0bh1pt72t733dy-9pbwjn

Numerically find a root of a transcendental equation:

https://wolfram.com/xid/0bh1pt72t733dy

Possible Issues (2)Common pitfalls and unexpected behavior
A larger setting for $MaxExtraPrecision might be needed:

https://wolfram.com/xid/0bh1pt72t733dy



https://wolfram.com/xid/0bh1pt72t733dy

Machine-number inputs can give high‐precision results:

https://wolfram.com/xid/0bh1pt72t733dy-0ybcni


https://wolfram.com/xid/0bh1pt72t733dy

Neat Examples (1)Surprising or curious use cases
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).
Text
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).
Wolfram Research (1991), RiemannSiegelTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html (updated 2023).
CMS
Wolfram Language. 1991. "RiemannSiegelTheta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html.
Wolfram Language. 1991. "RiemannSiegelTheta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html.
APA
Wolfram Language. (1991). RiemannSiegelTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html
Wolfram Language. (1991). RiemannSiegelTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html
BibTeX
@misc{reference.wolfram_2025_riemannsiegeltheta, author="Wolfram Research", title="{RiemannSiegelTheta}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}", note=[Accessed: 08-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_riemannsiegeltheta, organization={Wolfram Research}, title={RiemannSiegelTheta}, year={2023}, url={https://reference.wolfram.com/language/ref/RiemannSiegelTheta.html}, note=[Accessed: 08-June-2025
]}