WOLFRAM

TruncatedPolyhedron
TruncatedPolyhedron

gives the truncated polyhedron of poly by truncating all vertices.

truncates the polyhedron poly by a length ratio l at its vertices.

Details and Options

  • TruncatedPolyhedron is also known as ambo polyhedron, rectified polyhedron or vertextruncated polyhedron.
  • TruncatedPolyhedron generates a polyhedron from poly by cutting vertices by a length ratio l and creating a new face in place of each vertex.
  • TruncatedPolyhedron takes the same options as Polyhedron.
  • List of all options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Truncated polyhedron of a dodecahedron:

Out[1]=1
Out[2]=2

Find the truncated polyhedron of the Space Shuttle:

Visualization:

Out[2]=2

Scope  (4)Survey of the scope of standard use cases

TruncatedPolyhedron works on polyhedra:

Out[2]=2
Out[3]=3

TruncatedPolyhedron of Platonic solids includes Tetrahedron:

Out[1]=1

Cube:

Out[2]=2
Out[3]=3

Dodecahedron:

Out[4]=4

Octahedron:

Out[5]=5

Icosahedron:

Out[6]=6

Support polyhedron meshes:

Out[1]=1
Out[2]=2
Out[3]=3

Truncate the polyhedron by different length ratios:

Out[2]=2

Applications  (9)Sample problems that can be solved with this function

Basic Applications  (3)

Gallery of Platonic solids and their truncated polyhedra:

Out[1]=1

Gallery of Archimedean solids and their truncated polyhedra:

Out[1]=1

Truncated compounds of Platonic solids:

Out[1]=1

Archimedean solids:

Out[2]=2

Polyhedron Operations  (6)

Use TruncatedPolyhedron to compute the polyhedron operations, such as ambo operation:

Out[2]=2
Out[3]=3

Needle operation:

Out[2]=2
Out[3]=3

Join operation:

Out[2]=2
Out[3]=3

Bevel operation:

Out[2]=2
Out[3]=3

Expand operation:

Out[2]=2
Out[3]=3

Ortho operation:

Out[2]=2
Out[3]=3

Properties & Relations  (2)Properties of the function, and connections to other functions

The truncated simple polyhedron is simple:

Out[2]=2

The truncated convex polyhedron is convex:

Out[2]=2

Possible Issues  (2)Common pitfalls and unexpected behavior

TruncatedPolyhedron only supports simple polyhedra:

Out[2]=2
Out[3]=3

TruncatedPolyhedron can return degenerate polyhedra:

Out[1]=1
Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Truncate a tetrahedron:

Out[1]=1
Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.

Text

Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.

Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.

CMS

Wolfram Language. 2019. "TruncatedPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.

Wolfram Language. 2019. "TruncatedPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.

APA

Wolfram Language. (2019). TruncatedPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html

Wolfram Language. (2019). TruncatedPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html

BibTeX

@misc{reference.wolfram_2025_truncatedpolyhedron, author="Wolfram Research", title="{TruncatedPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}", note=[Accessed: 12-May-2025 ]}

@misc{reference.wolfram_2025_truncatedpolyhedron, author="Wolfram Research", title="{TruncatedPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}", note=[Accessed: 12-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_truncatedpolyhedron, organization={Wolfram Research}, title={TruncatedPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}, note=[Accessed: 12-May-2025 ]}

@online{reference.wolfram_2025_truncatedpolyhedron, organization={Wolfram Research}, title={TruncatedPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}, note=[Accessed: 12-May-2025 ]}