TruncatedPolyhedron
✖
TruncatedPolyhedron
Details and Options

- TruncatedPolyhedron is also known as ambo polyhedron, rectified polyhedron or vertex‐truncated polyhedron.
- TruncatedPolyhedron generates a polyhedron from poly by cutting vertices by a length ratio l and creating a new face in place of each vertex.
- TruncatedPolyhedron takes the same options as Polyhedron.

List of all options

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Truncated polyhedron of a dodecahedron:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-chb4nx


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-pr69di

Find the truncated polyhedron of the Space Shuttle:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-ierreq

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-7a6a3d

Scope (4)Survey of the scope of standard use cases
TruncatedPolyhedron works on polyhedra:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-cpw0pk

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-nc5g0k


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-jmbj0g

TruncatedPolyhedron of Platonic solids includes Tetrahedron:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-3o58n0

Cube:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-ruxc6r


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-umhlf3


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-frlodk


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-glsvr6


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-gdp0ug


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-3cfo8t


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-g06evt


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-pu5sqi

Truncate the polyhedron by different length ratios:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-e1thk8

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-efawwl

Applications (9)Sample problems that can be solved with this function
Basic Applications (3)
Gallery of Platonic solids and their truncated polyhedra:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-bq5o9d

Gallery of Archimedean solids and their truncated polyhedra:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-7ce8cn

Truncated compounds of Platonic solids:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-hkjz9t


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-y54rsb

Polyhedron Operations (6)
Use TruncatedPolyhedron to compute the polyhedron operations, such as ambo operation:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-0iw9f4

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-01o7bm


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-fzzeia


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-stfdpv

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-1v7nqw


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-xckcgm


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-h4ouo7

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-kn06zl


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-22wg6p


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-k4v1d

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-wk7pax


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-z525zx


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-gibvuz

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-ewk0ci


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-birkfg


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-nutc2o

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-46o46h


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-wni3ro

Properties & Relations (2)Properties of the function, and connections to other functions
The truncated simple polyhedron is simple:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-r62rjj

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-guy1qu

The truncated convex polyhedron is convex:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-goye1v

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-zl6aq7

Possible Issues (2)Common pitfalls and unexpected behavior
TruncatedPolyhedron only supports simple polyhedra:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-lqo9mg

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-388cdr


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-rtw2bh

TruncatedPolyhedron can return degenerate polyhedra:

https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-ozqw29


https://wolfram.com/xid/08dxmcc0djgvdk9lnkyj2-526pxv

Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
Text
Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
Wolfram Research (2019), TruncatedPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
CMS
Wolfram Language. 2019. "TruncatedPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
Wolfram Language. 2019. "TruncatedPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html.
APA
Wolfram Language. (2019). TruncatedPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html
Wolfram Language. (2019). TruncatedPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html
BibTeX
@misc{reference.wolfram_2025_truncatedpolyhedron, author="Wolfram Research", title="{TruncatedPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}", note=[Accessed: 12-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_truncatedpolyhedron, organization={Wolfram Research}, title={TruncatedPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/TruncatedPolyhedron.html}, note=[Accessed: 12-May-2025
]}