WavePDEComponent
WavePDEComponent[vars,pars]
yields a wave equation PDE term with model variables vars and model parameters pars.
Details


- WavePDEComponent returns a sum of differential operators to be used as a part of partial differential equations
- WavePDEComponent can be used to model wave equations with dependent variable
, independent variables
and time variable
.
- Time-dependent model variables vars are vars={u[t,x1,…,xn],t,{x1,…,xn}}.
- The WavePDEComponent is based on a diffusion term:
- The wave PDE term
is realized as a DiffusionPDETerm with
as a diffusion coefficient, for a constant resulting in
.
- The following model parameters pars can be given:
-
parameter default symbol "WaveCoefficient" 1 "RegionSymmetry" None - The source term coefficient
is a scalar.
- The source term coefficient
cannot depend on space.
- A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
- "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
-
dimension reduction equation 1D 2D - If the WavePDEComponent depends on parameters
that are specified in the association pars as …,keypi…,pivi,…, the parameters
are replaced with
.

Examples
open allclose allBasic Examples (3)
Scope (1)
Define a 2D axisymmetric wave PDE component:
Activate the term:
Wolfram Research (2020), WavePDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/WavePDEComponent.html (updated 2022).
Text
Wolfram Research (2020), WavePDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/WavePDEComponent.html (updated 2022).
CMS
Wolfram Language. 2020. "WavePDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/WavePDEComponent.html.
APA
Wolfram Language. (2020). WavePDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WavePDEComponent.html