WOLFRAM

plots the basis tree of wavelet image coefficients in the DiscreteWaveletData dwd.

plots coefficients up to refinement level r.

WaveletImagePlot[dwd,r,ifunc]

applies the image function ifunc to coefficients and wavelet indexes before plotting.

Details and Options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Show wavelet image coefficients arranged in a pyramid layout:

Out[2]=2

Plot wavelet image coefficients in a grid layout:

Out[3]=3

Plot a full tree of wavelet packet coefficients at different refinement levels:

Out[2]=2

Scope  (9)Survey of the scope of standard use cases

Data  (5)

DiscreteWaveletTransform of image data:

Out[1]=1

Plot image wavelet coefficients in a hierarchical grid:

Out[2]=2

The plotted coefficients are the Automatic coefficients used in the inverse transform:

Out[3]=3

Use WaveletImagePlot[dwd,r] to plot coefficients only up to refinement level r:

Out[2]=2

The hierarchical layout corresponds to the tree structure of the wavelet coefficients:

Out[3]=3

DiscreteWaveletPacketTransform of image data:

Out[1]=1

The DiscreteWaveletData object contains a full tree of coefficients at each level:

Out[2]=2

Default Automatic coefficients for packet transform correspond to the highest refinement level:

Out[2]=2

WaveletBestBasis computes a different Automatic tree of coefficients:

Out[3]=3

Specify an image function f to apply to wavelet coefficients before plotting:

Out[2]=2

By default, ImageAdjust[ImageApply[Abs,#]& is applied:

Out[3]=3

Presentation  (4)

Display with a label:

Out[2]=2

Specify a function to apply to each coefficient image:

Sharpen image coefficients:

Out[2]=2

Improve contrast:

Out[3]=3

Control the displayed size of the generated image:

Out[2]=2

Specify a style for grid lines separating wavelet coefficients:

Out[2]=2

Options  (4)Common values & functionality for each option

BaseStyle  (1)

Specify a style for lines separating wavelet coefficients:

Out[2]=2

ImageSize  (1)

Specify the size of the displayed image:

Out[2]=2

The pixel dimensions of the image are not affected by ImageSize:

Out[3]=3

Method  (2)

Inverse transform each coefficient before plotting:

Inverse transform coefficients from stationary wavelet transform:

Out[3]=3

Inverse transform coefficients from lifting wavelet transform:

Out[5]=5

Choose which channel to plot in multichannel Image:

Out[2]=2

Properties & Relations  (6)Properties of the function, and connections to other functions

WaveletImagePlot returns an Image object:

Out[2]=2

Use like any other image:

Out[3]=3

Pixel dimensions of generated images depend on padding, wavelet, and refinement level:

Out[2]=2

The generated image is generally larger than the original data:

Out[3]=3

WaveletImagePlot plots image wavelet coefficients in a hierarchical grid layout:

Out[2]=2

dwd[,"Image"] gives each coefficient as a separate image:

Out[3]=3

WaveletImagePlot plots the Automatic coefficients used in the inverse transform:

Out[2]=2

WaveletBestBasis selects a different default tree of coefficients:

Out[4]=4

WaveletMatrixPlot plots matrix wavelet coefficients in a hierarchical grid:

Out[3]=3

WaveletScalogram plots vector coefficients with numerical magnitude indicated by color:

Out[3]=3

WaveletListPlot plots vector coefficients with a common horizontal or vertical axis:

Out[4]=4

Possible Issues  (3)Common pitfalls and unexpected behavior

Generated images may be saturated if a custom image function f is specified:

Out[2]=2

Compose the custom image function with ImageAdjust:

Out[3]=3

Wavelet coefficients from stationary wavelet transform cannot be plotted using pyramid layout:

Out[1]=1
Out[2]=2

Pyramid layout cannot be constructed for inverse transformed wavelet coefficients:

Out[1]=1
Out[2]=2

Neat Examples  (2)Surprising or curious use cases

JPEG 2000 wavelet transform:

Improve contrast for detail coefficients:

Out[3]=3

Plot an image wavelet packet transform:

Out[1]=1
Out[3]=3
Wolfram Research (2010), WaveletImagePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletImagePlot.html.
Wolfram Research (2010), WaveletImagePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletImagePlot.html.

Text

Wolfram Research (2010), WaveletImagePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletImagePlot.html.

Wolfram Research (2010), WaveletImagePlot, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletImagePlot.html.

CMS

Wolfram Language. 2010. "WaveletImagePlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletImagePlot.html.

Wolfram Language. 2010. "WaveletImagePlot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletImagePlot.html.

APA

Wolfram Language. (2010). WaveletImagePlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletImagePlot.html

Wolfram Language. (2010). WaveletImagePlot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletImagePlot.html

BibTeX

@misc{reference.wolfram_2025_waveletimageplot, author="Wolfram Research", title="{WaveletImagePlot}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletImagePlot.html}", note=[Accessed: 08-July-2025 ]}

@misc{reference.wolfram_2025_waveletimageplot, author="Wolfram Research", title="{WaveletImagePlot}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletImagePlot.html}", note=[Accessed: 08-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_waveletimageplot, organization={Wolfram Research}, title={WaveletImagePlot}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletImagePlot.html}, note=[Accessed: 08-July-2025 ]}

@online{reference.wolfram_2025_waveletimageplot, organization={Wolfram Research}, title={WaveletImagePlot}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletImagePlot.html}, note=[Accessed: 08-July-2025 ]}