WOLFRAM

As of Version 7.0, FourierCoefficient is part of the built-in Wolfram Language kernel.

FourierCoefficient[expr,t,n]

gives the n^(th) coefficient in the Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.

Details and Options

  • To use FourierCoefficient, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The n^(th) coefficient in the Fourier exponential series expansion of expr is by default defined to be Integrate[expr 2πnt,{t,-,}].
  • If n is numeric, it should be an explicit integer.
  • Different choices for the definition of the Fourier exponential series expansion can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the n^(th) coefficient computed by FourierCoefficient is Integrate[expr 2 πbnt,{t,-,}].
  • In addition to the option FourierParameters, FourierCoefficient can also accept the options available to Integrate. These options are passed directly to Integrate.

Examples

Basic Examples  (1)Summary of the most common use cases

Use different definitions for calculating a coefficient in a Fourier series:

Out[2]=2
Out[3]=3

Compare with the answer from a numerical approximation:

Out[4]=4
Out[5]=5
Out[6]=6
Wolfram Research (2008), FourierCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.
Copy to clipboard.
Wolfram Research (2008), FourierCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

Text

Wolfram Research (2008), FourierCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

Copy to clipboard.
Wolfram Research (2008), FourierCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

CMS

Wolfram Language. 2008. "FourierCoefficient." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

Copy to clipboard.
Wolfram Language. 2008. "FourierCoefficient." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.

APA

Wolfram Language. (2008). FourierCoefficient. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html

Copy to clipboard.
Wolfram Language. (2008). FourierCoefficient. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html

BibTeX

@misc{reference.wolfram_2025_fouriercoefficient, author="Wolfram Research", title="{FourierCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}", note=[Accessed: 05-April-2025 ]}

Copy to clipboard.
@misc{reference.wolfram_2025_fouriercoefficient, author="Wolfram Research", title="{FourierCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}", note=[Accessed: 05-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_fouriercoefficient, organization={Wolfram Research}, title={FourierCoefficient}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}, note=[Accessed: 05-April-2025 ]}

Copy to clipboard.
@online{reference.wolfram_2025_fouriercoefficient, organization={Wolfram Research}, title={FourierCoefficient}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}, note=[Accessed: 05-April-2025 ]}