FourierSeries`
FourierSeries`

FourierSinCoefficient

As of Version 7.0, FourierSinCoefficient is part of the built-in Wolfram Language kernel.

FourierSinCoefficient[expr,t,n]

gives the n^(th) coefficient in the Fourier sine series expansion of expr, where expr is a periodic function of t with period 1.

Details and Options

  • To use FourierSinCoefficient, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
  • The n^(th) coefficient in the Fourier sine series expansion of expr is by default defined to be 2Integrate[expr Sin[2π n t],{t,-,}].
  • If n is numeric, it should be an explicit integer.
  • Different choices for the definition of the Fourier sine series expansion can be specified using the option FourierParameters.
  • With the setting FourierParameters->{a,b}, expr is assumed to have a period of , and the n^(th) coefficient computed by FourierSinCoefficient is 2  Integrate[expr Sin[2π b n t],{t,-,}].
  • In addition to the option FourierParameters, FourierSinCoefficient can also accept the options available to Integrate. These options are passed directly to Integrate.

Examples

Basic Examples  (1)

Use different definitions for calculating a coefficient in a Fourier sine series:

Compare with the answer from a numerical approximation:

Wolfram Research (2008), FourierSinCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.

Text

Wolfram Research (2008), FourierSinCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.

CMS

Wolfram Language. 2008. "FourierSinCoefficient." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html.

APA

Wolfram Language. (2008). FourierSinCoefficient. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html

BibTeX

@misc{reference.wolfram_2024_fouriersincoefficient, author="Wolfram Research", title="{FourierSinCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html}", note=[Accessed: 22-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_fouriersincoefficient, organization={Wolfram Research}, title={FourierSinCoefficient}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierSinCoefficient.html}, note=[Accessed: 22-January-2025 ]}