バージョン6.0の新機能:行列と線形代数の関数
Mathematicaはバージョン6.0でも任意の精度に一般化され,完全な記号機能を備えた最新の,そして最も効率的な線形代数のためのアルゴリズムを提供し続けた.特記すべき機能としては,Mathematicaの記号構造によって,通常のバンド行列の非常に柔軟な指定が可能になるということが挙げられる.
行列の構造の新関数
Span (;;) — ベクトルと行列から列と部分ブロックを抽出する
Band — 一般化されたバンド行列構造を記号的に指定する
ArrayFlatten — 一般化されたブロック行列コンストラクタ
Diagonal — 行列の対角を抽出する
HermitianMatrixQ ▪ PositiveDefiniteMatrixQ
行列の操作の新関数
LeastSquares — 行列形式で与えられた最小二乗問題を解く
MatrixExp,MatrixPower(変更) — ベクトルに適用できるように変更
HermiteDecomposition — 行列のエルミート(Hermite)正規形式
新ベクトル空間関数
Normalize ▪ Orthogonalize ▪ Projection ▪ UnitVector ▪ ConstantArray
新特殊行列
HilbertMatrix ▪ HankelMatrix ▪ ToeplitzMatrix ▪ DiagonalMatrix(変更)
新幾何学変換 »
RotationMatrix ▪ ShearingMatrix ▪ AffineTransform ▪ ...