WOLFRAM

gives the normalized form of a vector v.

gives the normalized form of a complex number z.

Normalize[expr,f]

normalizes with respect to the norm function f.

Details

  • Normalize[v] is effectively v/Norm[v], except that zero vectors are returned unchanged.
  • Except in the case of zero vectors, Normalize[v] returns the unit vector in the direction of v.
  • For a complex number z, Normalize[z] returns z/Abs[z], except that Normalize[0] gives 0.
  • Normalize[expr,f] is effectively expr/f[expr], except when there are zeros in f[expr].

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Out[1]=1

Scope  (5)Survey of the scope of standard use cases

Symbolic vectors:

Out[1]=1

Use an arbitrary norm function:

Out[1]=1

v is a complexvalued vector:

Normalize using exact arithmetic:

Out[2]=2

Use machine arithmetic:

Out[3]=3

Use 24digit precision arithmetic:

Out[4]=4

Normalize a sparse vector:

Out[1]=1
Out[2]=2
Out[3]=3

Normalize a TimeSeries:

Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5
Out[6]=6

Generalizations & Extensions  (2)Generalized and extended use cases

Normalize a matrix by explicitly specifying a norm function:

Out[1]=1

Normalize a polynomial with respect to integration over the interval to :

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

m is a symmetric matrix with distinct eigenvalues:

Out[1]=1

Power method to find the eigenvector associated with the largest eigenvalue:

Out[2]=2

This is consistent (up to sign) with what Eigenvectors gives:

Out[3]=3

The eigenvalue can be found with Norm:

Out[4]=4

Properties & Relations  (1)Properties of the function, and connections to other functions

v is a random vector:

Out[1]=1

u is the normalization of v:

Out[2]=2

u is a unit vector in the direction of v:

Out[3]=3
Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.
Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.

Text

Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.

Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.

CMS

Wolfram Language. 2007. "Normalize." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Normalize.html.

Wolfram Language. 2007. "Normalize." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Normalize.html.

APA

Wolfram Language. (2007). Normalize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Normalize.html

Wolfram Language. (2007). Normalize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Normalize.html

BibTeX

@misc{reference.wolfram_2025_normalize, author="Wolfram Research", title="{Normalize}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/Normalize.html}", note=[Accessed: 19-June-2025 ]}

@misc{reference.wolfram_2025_normalize, author="Wolfram Research", title="{Normalize}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/Normalize.html}", note=[Accessed: 19-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_normalize, organization={Wolfram Research}, title={Normalize}, year={2007}, url={https://reference.wolfram.com/language/ref/Normalize.html}, note=[Accessed: 19-June-2025 ]}

@online{reference.wolfram_2025_normalize, organization={Wolfram Research}, title={Normalize}, year={2007}, url={https://reference.wolfram.com/language/ref/Normalize.html}, note=[Accessed: 19-June-2025 ]}