AugmentedSymmetricPolynomial

AugmentedSymmetricPolynomial[{r1,r2,}]

represents a formal augmented symmetric polynomial with exponents r1, r2, .

AugmentedSymmetricPolynomial[{{r11,,r1n},{r21,,r2n},}]

represents a multivariate formal augmented symmetric polynomial with exponent vectors {r11, , r1n}, {r21, , r2n}, .

AugmentedSymmetricPolynomial[rspec,data]

gives the augmented symmetric polynomial in data.

Details

Examples

open allclose all

Basic Examples  (1)

Scope  (2)

Use MomentEvaluate to evaluate formal augmented symmetric polynomials on data:

TraditionalForm formatting:

Applications  (1)

Linearize polynomials in AugmentedSymmetricPolynomial:

Properties & Relations  (1)

AugmentedSymmetricPolynomial with a single exponent is equivalent to PowerSymmetricPolynomial:

This relationship also holds for the multivariate generalization:

Wolfram Research (2010), AugmentedSymmetricPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

Text

Wolfram Research (2010), AugmentedSymmetricPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

CMS

Wolfram Language. 2010. "AugmentedSymmetricPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

APA

Wolfram Language. (2010). AugmentedSymmetricPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html

BibTeX

@misc{reference.wolfram_2024_augmentedsymmetricpolynomial, author="Wolfram Research", title="{AugmentedSymmetricPolynomial}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html}", note=[Accessed: 22-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_augmentedsymmetricpolynomial, organization={Wolfram Research}, title={AugmentedSymmetricPolynomial}, year={2010}, url={https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html}, note=[Accessed: 22-December-2024 ]}