WOLFRAM

MomentEvaluate[mexpr,dist]

evaluates formal moments in the moment expression mexpr on the distribution dist.

MomentEvaluate[mexpr,list]

evaluates formal moments and formal sample moments in mexpr on the data list.

MomentEvaluate[mexpr,dist,list]

evaluates formal moments on the distribution dist and formal sample moments on the data list.

Details

  • A moment expression is an expression involving formal moments and formal sample moments.
  • A formal moment is an expression of the form:
  • Moment[r]formal r^(th) moment
    CentralMoment[r]formal r^(th) central moment
    FactorialMoment[r]formal r^(th) factorial moment
    Cumulant[r]formal r^(th) cumulant
  • A formal sample moment is an expression of the form:
  • PowerSymmetricPolynomial[r]formal r^(th) power symmetric polynomial
    AugmentedSymmetricPolynomial[{r1,r2,}]formal {r1,r2,} augmented symmetric polynomial
  • For a sample moment expression PowerSymmetricPolynomial[0] is taken to be the length of the list of data.
  • MomentEvaluate[mexpr,,n] assumes that n is taken to be the length of the list of data.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Evaluate formal moments for a univariate distribution:

Out[2]=2
Out[3]=3

Evaluate formal moments for a multivariate distribution:

Out[1]=1
Out[2]=2

Evaluate sample formal moments for data:

Out[1]=1
Out[2]=2

Evaluate formal moments for data:

Out[3]=3

Scope  (6)Survey of the scope of standard use cases

Evaluate mixed univariate formal moment polynomial for a distribution:

Out[1]=1

Evaluate mixed multivariate formal moment polynomial for a distribution:

Out[1]=1

Evaluate polynomial in formal moments for data:

Out[2]=2

Compare with direct evaluation:

Out[3]=3

Evaluate formal sample polynomial for data:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Evaluate formal sample polynomial for data with n being the sample size:

Out[1]=1

Evaluate an expression containing both formal moments and formal sample moments:

Out[1]=1
Out[3]=3

Alternatively:

Out[4]=4

Generalizations & Extensions  (1)Generalized and extended use cases

Compute mean, variance, skewness, and excess kurtosis expressed in terms of Cumulant:

Out[5]=5

Compare with direct evaluation:

Out[6]=6
Out[7]=7

Applications  (2)Sample problems that can be solved with this function

Find expectation of estimator on a sample from Bernoulli distribution:

Express the expectation of the estimator in terms of formal moments:

Out[4]=4

Expectation of the estimator for a sample from Bernoulli distribution:

Out[15]=15

Variance of the sample estimator:

Out[17]=17

Construct sample and unbiased estimators for :

Accumulate statistics of these estimators on the same data:

Out[7]=7

Compare the means of these statistics with population cumulant:

Out[8]=8

Find sampling population expectation of estimators for distribution dist:

Out[9]=9
Out[10]=10

Find sampling population variance of estimators for distribution dist:

Out[11]=11
Out[12]=12

Numerically evaluate expected variances for sample sizes used:

Out[13]=13

Compare to sample values:

Out[14]=14

Properties & Relations  (1)Properties of the function, and connections to other functions

MomentEvaluate effectively evaluates a moment expression by evaluating its constituents:

Out[14]=14
Out[15]=15
Out[16]=16
Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.
Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.

Text

Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.

Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.

CMS

Wolfram Language. 2010. "MomentEvaluate." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentEvaluate.html.

Wolfram Language. 2010. "MomentEvaluate." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentEvaluate.html.

APA

Wolfram Language. (2010). MomentEvaluate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentEvaluate.html

Wolfram Language. (2010). MomentEvaluate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentEvaluate.html

BibTeX

@misc{reference.wolfram_2025_momentevaluate, author="Wolfram Research", title="{MomentEvaluate}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentEvaluate.html}", note=[Accessed: 10-May-2025 ]}

@misc{reference.wolfram_2025_momentevaluate, author="Wolfram Research", title="{MomentEvaluate}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentEvaluate.html}", note=[Accessed: 10-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_momentevaluate, organization={Wolfram Research}, title={MomentEvaluate}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentEvaluate.html}, note=[Accessed: 10-May-2025 ]}

@online{reference.wolfram_2025_momentevaluate, organization={Wolfram Research}, title={MomentEvaluate}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentEvaluate.html}, note=[Accessed: 10-May-2025 ]}