MomentEvaluate
✖
MomentEvaluate
evaluates formal moments in the moment expression mexpr on the distribution dist.
evaluates formal moments and formal sample moments in mexpr on the data list.
evaluates formal moments on the distribution dist and formal sample moments on the data list.
Details

- A moment expression is an expression involving formal moments and formal sample moments.
- A formal moment is an expression of the form:
-
Moment[r] formal r moment
CentralMoment[r] formal r central moment
FactorialMoment[r] formal r factorial moment
Cumulant[r] formal r cumulant
- A formal sample moment is an expression of the form:
-
PowerSymmetricPolynomial[r] formal r power symmetric polynomial
AugmentedSymmetricPolynomial[{r1,r2,…}] formal {r1,r2,…} augmented symmetric polynomial - For a sample moment expression PowerSymmetricPolynomial[0] is taken to be the length of the list of data.
- MomentEvaluate[mexpr,…,n] assumes that n is taken to be the length of the list of data.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Evaluate formal moments for a univariate distribution:

https://wolfram.com/xid/0b0kaa1amqc-b5k4e6


https://wolfram.com/xid/0b0kaa1amqc-fnlqys

Evaluate formal moments for a multivariate distribution:

https://wolfram.com/xid/0b0kaa1amqc-c426bo


https://wolfram.com/xid/0b0kaa1amqc-dpoy4m

Evaluate sample formal moments for data:

https://wolfram.com/xid/0b0kaa1amqc-gicn7x


https://wolfram.com/xid/0b0kaa1amqc-nuzv75

Evaluate formal moments for data:

https://wolfram.com/xid/0b0kaa1amqc-hn4ad

Scope (6)Survey of the scope of standard use cases
Evaluate mixed univariate formal moment polynomial for a distribution:

https://wolfram.com/xid/0b0kaa1amqc-bcpnt1

Evaluate mixed multivariate formal moment polynomial for a distribution:

https://wolfram.com/xid/0b0kaa1amqc-jkvcy3

Evaluate polynomial in formal moments for data:

https://wolfram.com/xid/0b0kaa1amqc-jirjc0

https://wolfram.com/xid/0b0kaa1amqc-hdekd4

Compare with direct evaluation:

https://wolfram.com/xid/0b0kaa1amqc-cnjsgl

Evaluate formal sample polynomial for data:

https://wolfram.com/xid/0b0kaa1amqc-gsjom


https://wolfram.com/xid/0b0kaa1amqc-bcixw


https://wolfram.com/xid/0b0kaa1amqc-nex81


https://wolfram.com/xid/0b0kaa1amqc-bv27dv

Evaluate formal sample polynomial for data with n being the sample size:

https://wolfram.com/xid/0b0kaa1amqc-q06dj

Evaluate an expression containing both formal moments and formal sample moments:

https://wolfram.com/xid/0b0kaa1amqc-bwyn04


https://wolfram.com/xid/0b0kaa1amqc-bco5c0

https://wolfram.com/xid/0b0kaa1amqc-95onm


https://wolfram.com/xid/0b0kaa1amqc-3bpi6

Generalizations & Extensions (1)Generalized and extended use cases
Compute mean, variance, skewness, and excess kurtosis expressed in terms of Cumulant:

https://wolfram.com/xid/0b0kaa1amqc-k4tg1x

Compare with direct evaluation:

https://wolfram.com/xid/0b0kaa1amqc-twy63


https://wolfram.com/xid/0b0kaa1amqc-rv114

Applications (2)Sample problems that can be solved with this function
Find expectation of estimator on a sample from Bernoulli distribution:

https://wolfram.com/xid/0b0kaa1amqc-fh61e2
Express the expectation of the estimator in terms of formal moments:

https://wolfram.com/xid/0b0kaa1amqc-g3akce

Expectation of the estimator for a sample from Bernoulli distribution:

https://wolfram.com/xid/0b0kaa1amqc-mtznm0

Variance of the sample estimator:

https://wolfram.com/xid/0b0kaa1amqc-cs73qw

Construct sample and unbiased estimators for :

https://wolfram.com/xid/0b0kaa1amqc-482za


https://wolfram.com/xid/0b0kaa1amqc-wrdn

Accumulate statistics of these estimators on the same data:

https://wolfram.com/xid/0b0kaa1amqc-jlsq38

https://wolfram.com/xid/0b0kaa1amqc-cbxss4

https://wolfram.com/xid/0b0kaa1amqc-gvfudq

https://wolfram.com/xid/0b0kaa1amqc-gjwwji

https://wolfram.com/xid/0b0kaa1amqc-o7yxsa

Compare the means of these statistics with population cumulant:

https://wolfram.com/xid/0b0kaa1amqc-c1c68l

Find sampling population expectation of estimators for distribution dist:

https://wolfram.com/xid/0b0kaa1amqc-os986l


https://wolfram.com/xid/0b0kaa1amqc-c0ovi2

Find sampling population variance of estimators for distribution dist:

https://wolfram.com/xid/0b0kaa1amqc-yd9dh


https://wolfram.com/xid/0b0kaa1amqc-bpf7sl

Numerically evaluate expected variances for sample sizes used:

https://wolfram.com/xid/0b0kaa1amqc-ly1drk


https://wolfram.com/xid/0b0kaa1amqc-5k4c

Properties & Relations (1)Properties of the function, and connections to other functions
MomentEvaluate effectively evaluates a moment expression by evaluating its constituents:

https://wolfram.com/xid/0b0kaa1amqc-stml3

https://wolfram.com/xid/0b0kaa1amqc-ff0bp2


https://wolfram.com/xid/0b0kaa1amqc-mggrqq


https://wolfram.com/xid/0b0kaa1amqc-snx16

Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.
Text
Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.
Wolfram Research (2010), MomentEvaluate, Wolfram Language function, https://reference.wolfram.com/language/ref/MomentEvaluate.html.
CMS
Wolfram Language. 2010. "MomentEvaluate." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentEvaluate.html.
Wolfram Language. 2010. "MomentEvaluate." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MomentEvaluate.html.
APA
Wolfram Language. (2010). MomentEvaluate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentEvaluate.html
Wolfram Language. (2010). MomentEvaluate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MomentEvaluate.html
BibTeX
@misc{reference.wolfram_2025_momentevaluate, author="Wolfram Research", title="{MomentEvaluate}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MomentEvaluate.html}", note=[Accessed: 10-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_momentevaluate, organization={Wolfram Research}, title={MomentEvaluate}, year={2010}, url={https://reference.wolfram.com/language/ref/MomentEvaluate.html}, note=[Accessed: 10-May-2025
]}