PowerSymmetricPolynomial

PowerSymmetricPolynomial[r]

represents a formal power symmetric polynomial with exponent r.

PowerSymmetricPolynomial[{r1,r2,}]

represents a multivariate formal power symmetric polynomial with exponents r1, r2, .

PowerSymmetricPolynomial[rspec,data]

gives the power symmetric polynomial in data.

Details

Examples

open allclose all

Basic Examples  (1)

Scope  (3)

PowerSymmetricPolynomial of order 0 is effectively the number of data points:

Use MomentEvaluate to evaluate formal power symmetric polynomials on data:

TraditionalForm formatting:

Applications  (1)

Linearize power symmetric polynomials using AugmentedSymmetricPolynomial:

Check equality for 5 variables:

Properties & Relations  (1)

PowerSymmetricPolynomial is equivalent to AugmentedSymmetricPolynomial with a single exponent:

This relationship also holds for the multivariate generalization:

Wolfram Research (2010), PowerSymmetricPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

Text

Wolfram Research (2010), PowerSymmetricPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

CMS

Wolfram Language. 2010. "PowerSymmetricPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

APA

Wolfram Language. (2010). PowerSymmetricPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html

BibTeX

@misc{reference.wolfram_2024_powersymmetricpolynomial, author="Wolfram Research", title="{PowerSymmetricPolynomial}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}", note=[Accessed: 22-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_powersymmetricpolynomial, organization={Wolfram Research}, title={PowerSymmetricPolynomial}, year={2010}, url={https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}, note=[Accessed: 22-December-2024 ]}