BlockUpperTriangularMatrix
✖
BlockUpperTriangularMatrix
represents the block upper triangular matrix umat as a structured array.
Details and Options


- Block upper triangular matrices, when represented as structured arrays, allow for efficient storage and more efficient operations, including Det and LinearSolve.
- A block upper triangular matrix generalizes an upper triangular matrix, where the scalar elements in an upper triangular matrix that are on or above the diagonal are replaced by matrices of appropriate dimensions.
- For a BlockUpperTriangularMatrix sa, the following properties "prop" can be accessed as sa["prop"]:
-
"Matrix" block upper triangular matrix, represented as a full array "BlockSizes" sizes of the diagonal blocks "RowPermutation" permutation of the rows, represented as a permutation list "ColumnPermutation" permutation of the columns, represented as a permutation list "Properties" list of supported properties "Structure" type of structured array "StructuredData" internal data stored by the structured array "StructuredAlgorithms" list of functions with special methods for the structured array "Summary" summary information, represented as a Dataset - Normal[BlockUpperTriangularMatrix[…]] gives the block upper triangular matrix as an ordinary list.
- BlockUpperTriangularMatrix[…,TargetStructure->struct] returns the block upper triangular matrix in the format specified by struct. Possible settings include:
-
Automatic automatically choose the representation returned "Dense" represent the matrix as a dense matrix "Sparse" represent the matrix as a sparse array "Structured" represent the matrix as a structured array - BlockUpperTriangularMatrix[…,TargetStructureAutomatic] is equivalent to BlockUpperTriangularMatrix[…,TargetStructure"Structured"].

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Construct a block upper triangular matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-fqwn3m


https://wolfram.com/xid/0do80oezu9tb9vyjm-ssx5x

Normal can convert a BlockUpperTriangularMatrix to its ordinary representation:

https://wolfram.com/xid/0do80oezu9tb9vyjm-fgkucx

Construct a block upper triangular matrix with symbolic entries:

https://wolfram.com/xid/0do80oezu9tb9vyjm-fmk8zc


https://wolfram.com/xid/0do80oezu9tb9vyjm-kvwuo4


https://wolfram.com/xid/0do80oezu9tb9vyjm-10uirg

Scope (4)Survey of the scope of standard use cases
BlockUpperTriangularMatrix objects include properties that give information about the array:

https://wolfram.com/xid/0do80oezu9tb9vyjm-b621dk


https://wolfram.com/xid/0do80oezu9tb9vyjm-llpipt

The "BlockSizes" property gives the dimensions of the diagonal blocks:

https://wolfram.com/xid/0do80oezu9tb9vyjm-na801u

The "RowPermutation" property encodes row permutations done to the original matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-d6k021

The "ColumnPermutation" property encodes column permutations done to the original matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-eiir7r

The "Summary" property gives a brief summary of information about the array:

https://wolfram.com/xid/0do80oezu9tb9vyjm-2t1hkh

The "StructuredAlgorithms" property lists the functions that use the structure of the representation:

https://wolfram.com/xid/0do80oezu9tb9vyjm-33g6sl

Structured algorithms are typically faster:

https://wolfram.com/xid/0do80oezu9tb9vyjm-j4zpk3

https://wolfram.com/xid/0do80oezu9tb9vyjm-7pxqt


https://wolfram.com/xid/0do80oezu9tb9vyjm-ho3i1l


https://wolfram.com/xid/0do80oezu9tb9vyjm-c304or


https://wolfram.com/xid/0do80oezu9tb9vyjm-mxky2

When appropriate, structured algorithms return another BlockUpperTriangularMatrix object:

https://wolfram.com/xid/0do80oezu9tb9vyjm-otpl4i

Transposing bu gives a block lower triangular matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-hz2rsy

The product is no longer a block triangular matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-0pfzn8

Elements in BlockUpperTriangularMatrix are coerced to the precision of the nonzero elements of the input.

https://wolfram.com/xid/0do80oezu9tb9vyjm-ilelcc


https://wolfram.com/xid/0do80oezu9tb9vyjm-medfd3

Arbitrary-precision number matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-f053i

Generalizations & Extensions (1)Generalized and extended use cases
Options (1)Common values & functionality for each option
TargetStructure (1)
Return the block upper triangular matrix as a dense matrix:

https://wolfram.com/xid/0do80oezu9tb9vyjm-e3t5fj

Return the block upper triangular matrix as a structured array:

https://wolfram.com/xid/0do80oezu9tb9vyjm-numczz

Return the block upper triangular matrix as a sparse array:

https://wolfram.com/xid/0do80oezu9tb9vyjm-jnxo7

Applications (1)Sample problems that can be solved with this function
Properties & Relations (2)Properties of the function, and connections to other functions
Upper triangular matrices are treated as block upper triangular matrices with 1×1 diagonal blocks:

https://wolfram.com/xid/0do80oezu9tb9vyjm-cf4l1p


https://wolfram.com/xid/0do80oezu9tb9vyjm-ebnlj

If a given matrix cannot be transformed into a block triangular form, BlockUpperTriangularMatrix returns the matrix itself:

https://wolfram.com/xid/0do80oezu9tb9vyjm-em3ltz

Wolfram Research (2022), BlockUpperTriangularMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html (updated 2023).
Text
Wolfram Research (2022), BlockUpperTriangularMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html (updated 2023).
Wolfram Research (2022), BlockUpperTriangularMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html (updated 2023).
CMS
Wolfram Language. 2022. "BlockUpperTriangularMatrix." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html.
Wolfram Language. 2022. "BlockUpperTriangularMatrix." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html.
APA
Wolfram Language. (2022). BlockUpperTriangularMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html
Wolfram Language. (2022). BlockUpperTriangularMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html
BibTeX
@misc{reference.wolfram_2025_blockuppertriangularmatrix, author="Wolfram Research", title="{BlockUpperTriangularMatrix}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html}", note=[Accessed: 24-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_blockuppertriangularmatrix, organization={Wolfram Research}, title={BlockUpperTriangularMatrix}, year={2023}, url={https://reference.wolfram.com/language/ref/BlockUpperTriangularMatrix.html}, note=[Accessed: 24-May-2025
]}