WOLFRAM

Convolve[f,g,x,y]

gives the convolution with respect to x of the expressions f and g.

Convolve[f,g,{x1,x2,},{y1,y2,}]

gives the multidimensional convolution.

Details and Options

  • Convolve is also known as Fourier convolution, acausal convolution or bilateral convolution.
  • The convolution of two functions and is given by .
  • The multidimensional convolution is given by .
  • The following options can be given:
  • Assumptions $Assumptionsassumptions to make about parameters
    GenerateConditions Falsewhether to generate conditions on parameters
    MethodAutomaticmethod to use
    PrincipalValueFalsewhether to use principal value integrals

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Convolve a function with DiracDelta:

Out[1]=1

Convolve two unit pulses:

Out[1]=1

Convolve two exponential functions and plot the result:

Out[1]=1
Out[2]=2

Scope  (5)Survey of the scope of standard use cases

Univariate Convolution  (3)

The convolution gives the product integral of translates:

Out[4]=4
Out[4]=4

Elementary functions:

Out[1]=1
Out[2]=2

A convolution typically smooths the function:

Out[2]=2
Out[3]=3
Out[5]=5

For this family, they all have unit area:

Out[6]=6

Multivariate Convolution  (2)

The convolution gives the product integral of translates:

Out[2]=2

Convolution with multivariate delta functions acts as a point operator:

Out[1]=1

Convolution with a function of bounded support acts as a filter:

Out[2]=2

Generalizations & Extensions  (1)Generalized and extended use cases

Multiplication by UnitStep effectively gives the convolution on a finite interval:

Out[1]=1
Out[2]=2

Options  (2)Common values & functionality for each option

Assumptions  (1)

Specify assumptions on a variable or parameter:

Out[1]=1
Out[2]=2

GenerateConditions  (1)

Generate conditions for the range of a parameter:

Out[1]=1

Applications  (5)Sample problems that can be solved with this function

Obtain a particular solution for a linear ordinary differential equation using convolution:

Out[1]=1
Out[2]=2

Obtain the step response of a linear, time-invariant system given its impulse response h:

Out[2]=2

The step response of the system:

Out[3]=3
Out[4]=4

Convolving the PDF of UniformDistribution with itself gives a TriangularDistribution:

Out[1]=1
Out[2]=2
Out[3]=3

UniformSumDistribution[n] is the convolution of n UniformDistribution[] PDFs:

Out[1]=1
Out[2]=2

ErlangDistribution[k,λ] is the convolution of k ExponentialDistribution[λ] PDFs:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Properties & Relations  (7)Properties of the function, and connections to other functions

Convolve computes an integral over the real line:

Out[1]=1
Out[2]=2

Convolution with DiracDelta gives the function itself:

Out[1]=1

Scaling:

Out[1]=1
Out[2]=2

Commutativity:

Out[3]=3
Out[4]=4

Distributivity:

Out[1]=1
Out[2]=2

The Laplace transform of a causal convolution is a product of the individual transforms:

Out[3]=3
Out[4]=4

The Fourier transform of a convolution is related to the product of the individual transforms:

Out[3]=3
Out[4]=4
Out[5]=5
Out[6]=6

Interactive Examples  (1)Examples with interactive outputs

This demonstrates the convolution operation :

Out[3]=3
Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.
Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.

Text

Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.

Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.

CMS

Wolfram Language. 2008. "Convolve." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Convolve.html.

Wolfram Language. 2008. "Convolve." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Convolve.html.

APA

Wolfram Language. (2008). Convolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Convolve.html

Wolfram Language. (2008). Convolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Convolve.html

BibTeX

@misc{reference.wolfram_2025_convolve, author="Wolfram Research", title="{Convolve}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Convolve.html}", note=[Accessed: 01-April-2025 ]}

@misc{reference.wolfram_2025_convolve, author="Wolfram Research", title="{Convolve}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Convolve.html}", note=[Accessed: 01-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_convolve, organization={Wolfram Research}, title={Convolve}, year={2008}, url={https://reference.wolfram.com/language/ref/Convolve.html}, note=[Accessed: 01-April-2025 ]}

@online{reference.wolfram_2025_convolve, organization={Wolfram Research}, title={Convolve}, year={2008}, url={https://reference.wolfram.com/language/ref/Convolve.html}, note=[Accessed: 01-April-2025 ]}