FourierCosCoefficient

FourierCosCoefficient[expr,t,n]

给出 expr 的傅立叶余弦级数展开式的第 n 个系数.

FourierCosCoefficient[expr,{t1,t2,},{n1,n2,}]

给出一个多维傅立叶余弦系数.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (2)

求出第5个傅立叶余弦系数:

求出普通项的系数:

绘制序列:

求出 {3,5} 傅立叶余弦系数:

求出普通项的系数:

绘制多元序列:

范围  (4)

求出一个二次多项式的第6个傅立叶余弦系数:

一个分段函数的普通傅立叶余弦系数:

一个高斯函数的傅立叶余弦系数:

求出一个基函数的傅立叶余弦系数:

选项  (1)

FourierParameters  (1)

FourierParameters 使用一个非缺省设置:

Wolfram Research (2008),FourierCosCoefficient,Wolfram 语言函数,https://reference.wolfram.com/language/ref/FourierCosCoefficient.html.

文本

Wolfram Research (2008),FourierCosCoefficient,Wolfram 语言函数,https://reference.wolfram.com/language/ref/FourierCosCoefficient.html.

CMS

Wolfram 语言. 2008. "FourierCosCoefficient." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/FourierCosCoefficient.html.

APA

Wolfram 语言. (2008). FourierCosCoefficient. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/FourierCosCoefficient.html 年

BibTeX

@misc{reference.wolfram_2024_fouriercoscoefficient, author="Wolfram Research", title="{FourierCosCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FourierCosCoefficient.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_fouriercoscoefficient, organization={Wolfram Research}, title={FourierCosCoefficient}, year={2008}, url={https://reference.wolfram.com/language/ref/FourierCosCoefficient.html}, note=[Accessed: 22-November-2024 ]}