FourierSeries[expr,t,n]
gives the n -order Fourier series expansion of expr in t.
-order Fourier series expansion of expr in t. 
FourierSeries[expr,{t1,t2,…},{n1,n2,…}]
gives the multidimensional Fourier series.
 
     
   FourierSeries
FourierSeries[expr,t,n]
gives the n -order Fourier series expansion of expr in t.
-order Fourier series expansion of expr in t. 
FourierSeries[expr,{t1,t2,…},{n1,n2,…}]
gives the multidimensional Fourier series.
Details and Options
 
   - The   -order Fourier series of -order Fourier series of is by default defined to be is by default defined to be with with . .
- The multidimensional Fourier series of  is given by is given by with with . .
- The following options can be given:
- 
      
      Assumptions $Assumptions assumptions on parameters FourierParameters {1,1} parameters to define Fourier series GenerateConditions False whether to generate results that involve conditions on parameters 
- Common settings for FourierParameters include:
- 
      
      {1,1}   {1,–2Pi}   {a,b}   
Examples
open all close allScope (4)
Find the 3 -order Fourier series of an exponential function:
-order Fourier series of an exponential function: 
Fourier series for a Gaussian function:
Fourier series for Abs:
Options (1)
FourierParameters (1)
Use a nondefault setting for FourierParameters:
See Also
FourierCoefficient FourierSinSeries FourierCosSeries FourierTransform Fourier Series Integrate
Function Repository: NFourierSeries
Related Guides
History
Text
Wolfram Research (2008), FourierSeries, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierSeries.html.
CMS
Wolfram Language. 2008. "FourierSeries." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierSeries.html.
APA
Wolfram Language. (2008). FourierSeries. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierSeries.html
BibTeX
@misc{reference.wolfram_2025_fourierseries, author="Wolfram Research", title="{FourierSeries}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FourierSeries.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_fourierseries, organization={Wolfram Research}, title={FourierSeries}, year={2008}, url={https://reference.wolfram.com/language/ref/FourierSeries.html}, note=[Accessed: 31-October-2025]}
 -order Fourier series of
-order Fourier series of 