GARCHProcess
✖
GARCHProcess
更多信息

- GARCHProcess 是一个离散时间和连续状态的随机过程.
- 过程 x[t] 是一个 GARCH 过程,若条件均值 Expectation[x[t]{x[t-1],…}]=0 且由 Expectation[x[t]2{x[t-1],…}] 给出的条件方差
满足方程
.
- 初始数据 init 可以用列表 {…,y[-2],y[-1]} 或时间戳为 {…,-2,-1} 的单一路径 TemporalData 对象的形式给出.
- 标量 GARCHProcess 应该具有非负系数 αi 和 βj 以及正系数 κ.
- GARCHProcess[q,p] 表示阶数 q 和 p 的 GARCH 过程,以用于 EstimatedProcess 及相关函数.
- GARCHProcess 可以与诸如 RandomFunction、CovarianceFunction 和 TimeSeriesForecast 等函数结合使用.
范例
打开所有单元关闭所有单元基本范例 (3)常见实例总结
模拟 GARCHProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-se76vc
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-4iewur
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-0lg2yf
Out[3]=3

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-b7z11p
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-p99hv2
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-t8vwwp
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-lqhuff
Out[4]=4

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-kd62j1
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-2hau7
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-4m7h01
In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-ia2afh
Out[4]=4

范围 (13)标准用法实例范围调查
基本用法 (8)
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-bi9bqw
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-iv2byr
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-big92j
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-qz5qde
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-h1b72a
In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-l3esgs
In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-2vkjih
Out[4]=4

In[5]:=5

✖
https://wolfram.com/xid/0v51restwkdde-849us2
In[6]:=6

✖
https://wolfram.com/xid/0v51restwkdde-gq6qdl
In[7]:=7

✖
https://wolfram.com/xid/0v51restwkdde-t1m0n8
Out[7]=7

一个集成的 GARCHProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-bp9na8
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-lqdz53
Out[2]=2

发散的 GARCHProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-vdahex
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-ptahjr
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-b12vkp
Out[3]=3

GARCHProcess 成为协方差平稳过程的条件:
In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-mutsnx
Out[4]=4

GARCHProcess[1,1] 具有二阶平稳性的区域:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-vxckai
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-i15pmg
Out[2]=2

估计 GARCHProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-ppxlwo
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-fsgvlg
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-x957ms
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-7kln61
Out[4]=4

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-eirvpx
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-dwbfbx
In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-qqw7j5
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-zqnnuw
Out[4]=4

In[5]:=5

✖
https://wolfram.com/xid/0v51restwkdde-wux3zt
In[6]:=6

✖
https://wolfram.com/xid/0v51restwkdde-pksy44
Out[6]=6

过程切片性质 (5)
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-u1d2k5
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-6vu1p7
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-1z4n08
Out[3]=3

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-4vo40k
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-c76l3j
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-djic8g
Out[3]=3

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-nz2z6e
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-vw5ylw
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-diexmz
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-y5r0ud
Out[4]=4

In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-zmyzm4
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-s3nc1d
Out[2]=2

用蒙特卡罗方法计算切片分布的 NProbability:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-60em1m
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-00997i
Out[2]=2

计算 NExpectation:
In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-n91pf6
Out[3]=3

与二阶 Moment 比较:
In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-yzt5wc
Out[4]=4

属性和关系 (3)函数的属性及与其他函数的关联
GARCHProcess 的值是互不相关的:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-8tryi9

对应的 ARMAProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-dfyenx
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-z1tydk
Out[2]=2

GARCHProcess 的平方值服从 ARMAProcess:
In[1]:=1

✖
https://wolfram.com/xid/0v51restwkdde-rhmavw
In[2]:=2

✖
https://wolfram.com/xid/0v51restwkdde-inxryx
平方值的 CorrelationFunction 和 PartialCorrelationFunction:
In[3]:=3

✖
https://wolfram.com/xid/0v51restwkdde-ntjl10
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0v51restwkdde-x7lwn4
Out[4]=4

ARMA 过程的 CorrelationFunction 和 PartialCorrelationFunction:
In[5]:=5

✖
https://wolfram.com/xid/0v51restwkdde-sc2499
Out[5]=5

Wolfram Research (2014),GARCHProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GARCHProcess.html.
✖
Wolfram Research (2014),GARCHProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GARCHProcess.html.
文本
Wolfram Research (2014),GARCHProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GARCHProcess.html.
✖
Wolfram Research (2014),GARCHProcess,Wolfram 语言函数,https://reference.wolfram.com/language/ref/GARCHProcess.html.
CMS
Wolfram 语言. 2014. "GARCHProcess." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/GARCHProcess.html.
✖
Wolfram 语言. 2014. "GARCHProcess." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/GARCHProcess.html.
APA
Wolfram 语言. (2014). GARCHProcess. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/GARCHProcess.html 年
✖
Wolfram 语言. (2014). GARCHProcess. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/GARCHProcess.html 年
BibTeX
✖
@misc{reference.wolfram_2025_garchprocess, author="Wolfram Research", title="{GARCHProcess}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/GARCHProcess.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_garchprocess, organization={Wolfram Research}, title={GARCHProcess}, year={2014}, url={https://reference.wolfram.com/language/ref/GARCHProcess.html}, note=[Accessed: 04-April-2025
]}