HypergeometricPFQRegularized
✖
HypergeometricPFQRegularized
is the regularized generalized hypergeometric function .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- HypergeometricPFQRegularized is finite for all finite values of its arguments so long as
.
- For certain special arguments, HypergeometricPFQRegularized automatically evaluates to exact values.
- HypergeometricPFQRegularized can be evaluated to arbitrary numerical precision.
- HypergeometricPFQRegularized can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/040178ialp5dpzgy-v0k0a


https://wolfram.com/xid/040178ialp5dpzgy-dzpoz

Plot over a subset of the reals:

https://wolfram.com/xid/040178ialp5dpzgy-m51

Plot over a subset of the complexes:

https://wolfram.com/xid/040178ialp5dpzgy-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/040178ialp5dpzgy-f65ufv

Series expansion at Infinity:

https://wolfram.com/xid/040178ialp5dpzgy-fgrnr3

Scope (33)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/040178ialp5dpzgy-l274ju


https://wolfram.com/xid/040178ialp5dpzgy-cksbl4


https://wolfram.com/xid/040178ialp5dpzgy-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/040178ialp5dpzgy-y7k4a


https://wolfram.com/xid/040178ialp5dpzgy-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/040178ialp5dpzgy-di5gcr


https://wolfram.com/xid/040178ialp5dpzgy-bq2c6r

HypergeometricPFQRegularized can be used with Interval and CenteredInterval objects:

https://wolfram.com/xid/040178ialp5dpzgy-cmdnbi


https://wolfram.com/xid/040178ialp5dpzgy-ddeque

Compute the elementwise values of an array:

https://wolfram.com/xid/040178ialp5dpzgy-thgd2

Or compute the matrix HypergeometricPFQRegularized function using MatrixFunction:

https://wolfram.com/xid/040178ialp5dpzgy-o5jpo

Specific Values (4)
For simple parameters, HypergeometricPFQRegularized evaluates to simpler functions:

https://wolfram.com/xid/040178ialp5dpzgy-o7spmt


https://wolfram.com/xid/040178ialp5dpzgy-jql9vr


https://wolfram.com/xid/040178ialp5dpzgy-h2sg3


https://wolfram.com/xid/040178ialp5dpzgy-jevg27

Find a value of for which HypergeometricPFQRegularized[{2,1},{2,3},x]1.5:

https://wolfram.com/xid/040178ialp5dpzgy-f2hrld


https://wolfram.com/xid/040178ialp5dpzgy-e82ip3

Visualization (2)
Plot the HypergeometricPFQRegularized function for various parameters:

https://wolfram.com/xid/040178ialp5dpzgy-c0x9p4


https://wolfram.com/xid/040178ialp5dpzgy-kgd8nu


https://wolfram.com/xid/040178ialp5dpzgy-cvjvsr

Function Properties (10)
HypergeometricPFQRegularized is defined for all real and complex values:

https://wolfram.com/xid/040178ialp5dpzgy-cl7ele


https://wolfram.com/xid/040178ialp5dpzgy-de3irc

HypergeometricPFQRegularized threads elementwise over lists in its third argument:

https://wolfram.com/xid/040178ialp5dpzgy-gtl3ub

HypergeometricPFQRegularized is an analytic function of z for specific values:

https://wolfram.com/xid/040178ialp5dpzgy-dpcmbc


https://wolfram.com/xid/040178ialp5dpzgy-1dshm

HypergeometricPFQRegularized is neither non-decreasing nor non-increasing for specific values:

https://wolfram.com/xid/040178ialp5dpzgy-rmb7f


https://wolfram.com/xid/040178ialp5dpzgy-elzs35

HypergeometricPFQRegularized[{1,1,1},{3,3,3},z] is injective:

https://wolfram.com/xid/040178ialp5dpzgy-g54sqh


https://wolfram.com/xid/040178ialp5dpzgy-zf7zy

HypergeometricPFQRegularized[{1,1,1},{3,3,3},z] is not surjective:

https://wolfram.com/xid/040178ialp5dpzgy-klmhpu


https://wolfram.com/xid/040178ialp5dpzgy-b5ts4n

HypergeometricPFQRegularized is neither non-negative nor non-positive:

https://wolfram.com/xid/040178ialp5dpzgy-bdbh0f


https://wolfram.com/xid/040178ialp5dpzgy-codo9f

HypergeometricPFQRegularized[{1,1,2},{3,3},z] has both singularity and discontinuity for z≥1 and at zero:

https://wolfram.com/xid/040178ialp5dpzgy-hl8oqu


https://wolfram.com/xid/040178ialp5dpzgy-counuv

HypergeometricPFQRegularized is neither convex nor concave:

https://wolfram.com/xid/040178ialp5dpzgy-ci2sbr


https://wolfram.com/xid/040178ialp5dpzgy-fybize

TraditionalForm formatting:

https://wolfram.com/xid/040178ialp5dpzgy-cegk5j

Differentiation (3)
First derivative with respect to :

https://wolfram.com/xid/040178ialp5dpzgy-krpoah

Higher derivatives with respect to :

https://wolfram.com/xid/040178ialp5dpzgy-z33jv

Plot the higher derivatives with respect to when
and
:

https://wolfram.com/xid/040178ialp5dpzgy-csvztd

Formula for the derivative with respect to z when a1=1,a2=2 and b1=b2=b3=3:

https://wolfram.com/xid/040178ialp5dpzgy-cb5zgj

Integration (3)
Compute the indefinite integral using Integrate:

https://wolfram.com/xid/040178ialp5dpzgy-bponid


https://wolfram.com/xid/040178ialp5dpzgy-op9yly


https://wolfram.com/xid/040178ialp5dpzgy-bfdh5d


https://wolfram.com/xid/040178ialp5dpzgy-4nbst


https://wolfram.com/xid/040178ialp5dpzgy-yncg8

Series Expansions (5)
Find the Taylor expansion using Series:

https://wolfram.com/xid/040178ialp5dpzgy-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/040178ialp5dpzgy-binhar

General term in the series expansion using SeriesCoefficient:

https://wolfram.com/xid/040178ialp5dpzgy-dznx2j

Find the series expansion at Infinity:

https://wolfram.com/xid/040178ialp5dpzgy-syq

Find the series expansion for an arbitrary symbolic direction :

https://wolfram.com/xid/040178ialp5dpzgy-t5t

Taylor expansion at a generic point:

https://wolfram.com/xid/040178ialp5dpzgy-jwxla7

Applications (1)Sample problems that can be solved with this function
Properties & Relations (2)Properties of the function, and connections to other functions
Use FunctionExpand to express the input in terms of simpler functions:

https://wolfram.com/xid/040178ialp5dpzgy-dzpt0

Integrate may return results involving HypergeometricPFQRegularized:

https://wolfram.com/xid/040178ialp5dpzgy-deb13z

Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).
Text
Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).
Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).
CMS
Wolfram Language. 1996. "HypergeometricPFQRegularized." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html.
Wolfram Language. 1996. "HypergeometricPFQRegularized." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html.
APA
Wolfram Language. (1996). HypergeometricPFQRegularized. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html
Wolfram Language. (1996). HypergeometricPFQRegularized. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html
BibTeX
@misc{reference.wolfram_2025_hypergeometricpfqregularized, author="Wolfram Research", title="{HypergeometricPFQRegularized}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_hypergeometricpfqregularized, organization={Wolfram Research}, title={HypergeometricPFQRegularized}, year={2022}, url={https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}, note=[Accessed: 29-March-2025
]}