WOLFRAM

HypergeometricPFQRegularized
HypergeometricPFQRegularized

HypergeometricPFQRegularized[{a1,,ap},{b1,,bq},z]

is the regularized generalized hypergeometric function .

Details

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Evaluate symbolically:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Scope  (33)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized can be used with Interval and CenteredInterval objects:

Out[1]=1
Out[2]=2

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix HypergeometricPFQRegularized function using MatrixFunction:

Out[2]=2

Specific Values  (4)

For simple parameters, HypergeometricPFQRegularized evaluates to simpler functions:

Out[1]=1

Evaluate symbolically:

Out[1]=1
Out[2]=2

Value at zero:

Out[1]=1

Find a value of for which HypergeometricPFQRegularized[{2,1},{2,3},x]1.5:

Out[1]=1
Out[2]=2

Visualization  (2)

Plot the HypergeometricPFQRegularized function for various parameters:

Out[1]=1

Plot the real part of _1F^~_2(1/2;1/2,1/3;z):

Out[1]=1

Plot the imaginary part of _1F^~_2(1/2;1/2,1/3;z):

Out[2]=2

Function Properties  (10)

HypergeometricPFQRegularized is defined for all real and complex values:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized threads elementwise over lists in its third argument:

Out[1]=1

HypergeometricPFQRegularized is an analytic function of z for specific values:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized is neither non-decreasing nor non-increasing for specific values:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized[{1,1,1},{3,3,3},z] is injective:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized[{1,1,1},{3,3,3},z] is not surjective:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized is neither non-negative nor non-positive:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized[{1,1,2},{3,3},z] has both singularity and discontinuity for z1 and at zero:

Out[1]=1
Out[2]=2

HypergeometricPFQRegularized is neither convex nor concave:

Out[1]=1
Out[2]=2

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to :

Out[1]=1

Higher derivatives with respect to :

Out[1]=1

Plot the higher derivatives with respect to when and :

Out[2]=2

Formula for the ^(th) derivative with respect to z when a1=1,a2=2 and b1=b2=b3=3:

Out[1]=1

Integration  (3)

Compute the indefinite integral using Integrate:

Out[1]=1

Verify the antiderivative:

Out[2]=2

Definite integral:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (5)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[4]=4

General term in the series expansion using SeriesCoefficient:

Out[1]=1

Find the series expansion at Infinity:

Out[1]=1

Find the series expansion for an arbitrary symbolic direction :

Out[1]=1

Taylor expansion at a generic point:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Find a fractional derivative of BesselJ:

Out[1]=1

Integral of order of BesselJ[0,z]:

Out[2]=2

Properties & Relations  (2)Properties of the function, and connections to other functions

Use FunctionExpand to express the input in terms of simpler functions:

Out[1]=1

Integrate may return results involving HypergeometricPFQRegularized:

Out[1]=1
Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).
Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).

Text

Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).

Wolfram Research (1996), HypergeometricPFQRegularized, Wolfram Language function, https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html (updated 2022).

CMS

Wolfram Language. 1996. "HypergeometricPFQRegularized." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html.

Wolfram Language. 1996. "HypergeometricPFQRegularized." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html.

APA

Wolfram Language. (1996). HypergeometricPFQRegularized. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html

Wolfram Language. (1996). HypergeometricPFQRegularized. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html

BibTeX

@misc{reference.wolfram_2025_hypergeometricpfqregularized, author="Wolfram Research", title="{HypergeometricPFQRegularized}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_hypergeometricpfqregularized, author="Wolfram Research", title="{HypergeometricPFQRegularized}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_hypergeometricpfqregularized, organization={Wolfram Research}, title={HypergeometricPFQRegularized}, year={2022}, url={https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_hypergeometricpfqregularized, organization={Wolfram Research}, title={HypergeometricPFQRegularized}, year={2022}, url={https://reference.wolfram.com/language/ref/HypergeometricPFQRegularized.html}, note=[Accessed: 29-March-2025 ]}