InverseBilateralLaplaceTransform
✖
InverseBilateralLaplaceTransform
gives the multidimensional inverse bilateral Laplace transform of expr.
Details and Options

- The inverse bilateral Laplace transform of a function
is defined to be
, where the integration is along a vertical line
, lying in a strip
in which the function
is holomorphic. In some cases, the strip of analyticity may extend to a half-plane.
- The multidimensional inverse bilateral Laplace transform of a function
is given by a contour integral of the form
.
- The integral is computed using numerical methods if the third argument,
, is given a numerical value.
- The following options can be given:
-
AccuracyGoal Automatic digits of absolute accuracy sought Assumptions $Assumptions assumptions to make about parameters GenerateConditions False whether to generate answers that involve conditions on parameters Method Automatic method to use PerformanceGoal $PerformanceGoal aspects of performance to optimize PrecisionGoal Automatic digits of precision sought WorkingPrecision Automatic the precision used in internal computations

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Inverse bilateral Laplace transform of a function:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-g7y74o

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-usbmnw

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-34mymg

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-858h6c
Scope (13)Survey of the scope of standard use cases
Inverse bilateral Laplace transform of rational function with two real poles:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-yuu6wa
Rational function with two real and two complex poles:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-3j6aov
The following function has two real and four complex poles:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-y525zg

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-4dys4g

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-1mdbcd

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-7xbzal
Inverse bilateral Laplace transform of a product of rational and exponential functions:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-6i01lu
A rational function with different strips of convergences has different inverse bilateral Laplace transforms:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-505trt

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-lh8c5r

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-2f8cp3

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-te24k8
Rational function whose region of convergence is in the left half-plane:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-74thmm
Function with region of convergence in the right half-plane:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-lrtzg6

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-ufywdx
The inverse bilateral Laplace transform of the following rational function is a decaying sinusoidal wave:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-8d94wx

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-rrf50t
Inverse bilateral Laplace transform of a function that is analytic in the whole complex plane:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-gwc85p

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-vozysp
Inverse bilateral Laplace transform leading to a Gaussian function:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-pqqn3o
Inverse bilateral Laplace transform of a constant is a Dirac delta function:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-rx21du
Evaluate the inverse bilateral Laplace transform at a single point:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-kin0zu
Inverse bilateral Laplace transform at a single point for an analytic function:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-tu4oar
Options (3)Common values & functionality for each option
Assumptions (3)
Specify the range for a parameter using Assumptions:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-xvve2t
Use Assumptions to place a pole outside the strip of convergence:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-neri75
Use Assumptions to restrict the right end of the convergence strip in the left half-plane:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-jhlsjj
Properties & Relations (1)Properties of the function, and connections to other functions
InverseBilateralLaplaceTransform and BilateralLaplaceTransform are mutual inverses:

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-si5uys

https://wolfram.com/xid/0ejrhtelmtghotrfpcvbm-f185p5
Wolfram Research (2021), InverseBilateralLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html.
Text
Wolfram Research (2021), InverseBilateralLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html.
Wolfram Research (2021), InverseBilateralLaplaceTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html.
CMS
Wolfram Language. 2021. "InverseBilateralLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html.
Wolfram Language. 2021. "InverseBilateralLaplaceTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html.
APA
Wolfram Language. (2021). InverseBilateralLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html
Wolfram Language. (2021). InverseBilateralLaplaceTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html
BibTeX
@misc{reference.wolfram_2025_inversebilaterallaplacetransform, author="Wolfram Research", title="{InverseBilateralLaplaceTransform}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html}", note=[Accessed: 27-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inversebilaterallaplacetransform, organization={Wolfram Research}, title={InverseBilateralLaplaceTransform}, year={2021}, url={https://reference.wolfram.com/language/ref/InverseBilateralLaplaceTransform.html}, note=[Accessed: 27-March-2025
]}