gives the Jacobi epsilon function TemplateBox[{u, m}, JacobiEpsilon].



open allclose all

Basic Examples  (3)

Evaluate numerically:

Series expansion about the origin:

Scope  (23)

Numerical Evaluation  (4)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate JacobiEpsilon efficiently at high precision:

JacobiEpsilon threads elementwise over lists:

Specific Values  (3)

Simple exact values are generated automatically:

JacobiEpsilon has poles coinciding with the poles of JacobiDN:

Find a root of JacobiEpsilon[u,]=2:

Visualization  (3)

Plot the JacobiEpsilon functions for various values of parameter m:

Plot JacobiEpsilon as a function of its parameter m:

Plot the real part of JacobiEpsilon[x+y,]:

Plot the imaginary part of JacobiEpsilon[x+y,]:

Function Properties  (2)

JacobiEpsilon is additive quasiperiodic with quasiperiod 2 TemplateBox[{m}, EllipticK]:

JacobiEpsilon is additive quasiperiodic with quasiperiod 2 ⅈ TemplateBox[{{1, -, m}}, EllipticK]:

JacobiEpsilon is an odd function:

Differentiation  (3)

First derivative:

Higher-order derivatives:

Plot derivatives for parameter :

Derivative with respect to parameter m:

Integration  (1)

Indefinite integral of JacobiEpsilon:

Series Expansions  (3)

Series expansion for JacobiEpsilon[u,]:

Plot the first three approximations for JacobiEpsilon[u,] around :

Taylor expansion for JacobiEpsilon[2,m]:

Plot the first three series approximations for JacobiEpsilon[2,m] around :

JacobiEpsilon can be applied to power series:

Function Identities and Simplifications  (2)

Parity transformation and quasiperiodicity relations are automatically applied:

Automatic argument simplifications:

Function Representations  (2)

JacobiEpsilon is related to the elliptic integral of the second kind:

TraditionalForm formatting:

Applications  (7)

JacobiEpsilon arises in derivatives of Jacobi elliptic functions with respect to parameter :

Plot JacobiEpsilon over the complex plane:

Motion of a charged particle in a magnetic field:

Verify that it solves Newton's equation of motion with Lorentz force:

Plot particle trajectories for several different initial velocities:

Parameterization of a rotating elastic rod (fixed at the origin):

Plot the shape of the deformed rod:

The parameterization parameter is the length of the rod:

Parameterization of Costa's minimal surface [MathWorld]:

Parameterization of the ChenGackstatter minimal surface:

Construct nonperiodic solutions of the Lamé differential equation from periodic solutions:

Verify that they satisfy the Lamé equation:

Plot all the solutions together:

Properties & Relations  (3)

JacobiEpsilon is defined as a definite integral of TemplateBox[{u, m}, JacobiDN]^2:

JacobiEpsilon[u,m] is a meromorphic extension of TemplateBox[{TemplateBox[{u, m}, JacobiAmplitude], m}, EllipticE2]:

JacobiEpsilon is related to JacobiZN:

Wolfram Research (2020), JacobiEpsilon, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiEpsilon.html.


Wolfram Research (2020), JacobiEpsilon, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiEpsilon.html.


Wolfram Language. 2020. "JacobiEpsilon." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiEpsilon.html.


Wolfram Language. (2020). JacobiEpsilon. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiEpsilon.html


@misc{reference.wolfram_2024_jacobiepsilon, author="Wolfram Research", title="{JacobiEpsilon}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiEpsilon.html}", note=[Accessed: 24-April-2024 ]}


@online{reference.wolfram_2024_jacobiepsilon, organization={Wolfram Research}, title={JacobiEpsilon}, year={2020}, url={https://reference.wolfram.com/language/ref/JacobiEpsilon.html}, note=[Accessed: 24-April-2024 ]}