# JacobiNC

JacobiNC[u,m]

gives the Jacobi elliptic function .

# Details

• Mathematical function, suitable for both symbolic and numerical manipulation.
• , where .
• is a doubly periodic function in u with periods and , where is the elliptic integral EllipticK.
• JacobiNC is a meromorphic function in both arguments.
• For certain special arguments, JacobiNC automatically evaluates to exact values.
• JacobiNC can be evaluated to arbitrary numerical precision.
• JacobiNC automatically threads over lists.

# Examples

open allclose all

## Basic Examples(4)

Evaluate numerically:

Plot the function over a subset of the reals:

Plot over a subset of the complexes:

Series expansions about the origin:

## Scope(33)

### Numerical Evaluation(4)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments:

Evaluate JacobiNC efficiently at high precision:

JacobiNC threads elementwise over lists:

### Specific Values(3)

Simple exact values are generated automatically:

Some poles of JacobiNC:

Find a local maximum of JacobiNC as a root of :

### Visualization(3)

Plot the JacobiNC functions for various parameter values:

Plot JacobiNC as a function of its parameter :

Plot the real part of :

Plot the imaginary part of :

### Function Properties(8)

JacobiNC is -periodic along the real axis:

JacobiNC is -periodic along the imaginary axis:

JacobiNC is an even function in its first argument:

is an analytic function of for :

It has both singularities and discontinuities for :

is neither nondecreasing nor nonincreasing:

is not injective for any fixed :

is not surjective for any fixed :

JacobiNC is non-negative nor for :

In general, it has indeterminate sign:

JacobiNC is neither convex nor concave:

### Differentiation(3)

First derivative:

Higher derivatives:

Plot higher derivatives for :

Derivative with respect to :

### Integration(3)

Indefinite integral of JacobiNC:

Definite integral of JacobiNC:

More integrals:

### Series Expansions(3)

Taylor expansion for :

Plot the first three approximations for around :

Taylor expansion for :

Plot the first three approximations for around :

JacobiNC can be applied to power series:

### Function Identities and Simplifications(3)

Parity transformations and periodicity relations are automatically applied:

Identity involving JacobiSC:

Argument simplifications:

### Function Representations(3)

Representation in terms of Sec of JacobiAmplitude:

Relation to other Jacobi elliptic functions:

TraditionalForm formatting:

## Applications(5)

Conformal map from a unit triangle to the unit disk:

Show points before and after the map:

Parametrize a lemniscate by arc length:

Show arc length parametrization and classical parametrization:

Solution of an anharmonic oscillator :

Plot various solutions:

Solution of the field theory wave equation :

Plot a solution:

Parameterization of Costa's minimal surface [MathWorld]:

## Properties & Relations(2)

Compose with inverse functions:

Use PowerExpand to disregard multivaluedness of the inverse function:

Solve a transcendental equation:

## Possible Issues(2)

Machine-precision input is insufficient to give the correct answer:

Currently only simple simplification rules are built in for Jacobi functions:

Wolfram Research (1988), JacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNC.html.

#### Text

Wolfram Research (1988), JacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNC.html.

#### CMS

Wolfram Language. 1988. "JacobiNC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiNC.html.

#### APA

Wolfram Language. (1988). JacobiNC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiNC.html

#### BibTeX

@misc{reference.wolfram_2023_jacobinc, author="Wolfram Research", title="{JacobiNC}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiNC.html}", note=[Accessed: 22-April-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2023_jacobinc, organization={Wolfram Research}, title={JacobiNC}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiNC.html}, note=[Accessed: 22-April-2024 ]}