JacobiNC
✖
JacobiNC
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
, where
.
is a doubly periodic function in u with periods
and
, where
is the elliptic integral EllipticK.
- JacobiNC is a meromorphic function in both arguments.
- For certain special arguments, JacobiNC automatically evaluates to exact values.
- JacobiNC can be evaluated to arbitrary numerical precision.
- JacobiNC automatically threads over lists.
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0cq1clws-qg06o

Plot the function over a subset of the reals:

https://wolfram.com/xid/0cq1clws-hfhns

Plot over a subset of the complexes:

https://wolfram.com/xid/0cq1clws-kiedlx

Series expansions about the origin:

https://wolfram.com/xid/0cq1clws-dlr6k9


https://wolfram.com/xid/0cq1clws-elamcj

Scope (34)Survey of the scope of standard use cases
Numerical Evaluation (5)
Evaluate numerically to high precision:

https://wolfram.com/xid/0cq1clws-bfhpdn

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0cq1clws-bwgoc

Evaluate for complex arguments:

https://wolfram.com/xid/0cq1clws-fobn4r

Evaluate JacobiNC efficiently at high precision:

https://wolfram.com/xid/0cq1clws-di5gcr


https://wolfram.com/xid/0cq1clws-bq2c6r

Compute average case statistical intervals using Around:

https://wolfram.com/xid/0cq1clws-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0cq1clws-thgd2

Or compute the matrix JacobiNC function using MatrixFunction:

https://wolfram.com/xid/0cq1clws-o5jpo

Specific Values (3)
Simple exact values are generated automatically:

https://wolfram.com/xid/0cq1clws-gbl6xp


https://wolfram.com/xid/0cq1clws-c6oc3w

Some poles of JacobiNC:

https://wolfram.com/xid/0cq1clws-cw39qs

Find a local maximum of JacobiNC as a root of :

https://wolfram.com/xid/0cq1clws-f2hrld


https://wolfram.com/xid/0cq1clws-b68rxw

Visualization (3)
Plot the JacobiNC functions for various parameter values:

https://wolfram.com/xid/0cq1clws-ecj8m7

Plot JacobiNC as a function of its parameter :

https://wolfram.com/xid/0cq1clws-du62z6


https://wolfram.com/xid/0cq1clws-ouu484


https://wolfram.com/xid/0cq1clws-poucr2

Function Properties (8)
JacobiNC is -periodic along the real axis:

https://wolfram.com/xid/0cq1clws-ewxrep

JacobiNC is -periodic along the imaginary axis:

https://wolfram.com/xid/0cq1clws-w9fc2

JacobiNC is an even function in its first argument:

https://wolfram.com/xid/0cq1clws-dnla5q

is an analytic function of
for
:

https://wolfram.com/xid/0cq1clws-h5x4l2


https://wolfram.com/xid/0cq1clws-drn9c1

It has both singularities and discontinuities for :

https://wolfram.com/xid/0cq1clws-mdtl3h


https://wolfram.com/xid/0cq1clws-mn5jws

is neither nondecreasing nor nonincreasing:

https://wolfram.com/xid/0cq1clws-nlz7s

is not injective for any fixed
:

https://wolfram.com/xid/0cq1clws-nep1eu


https://wolfram.com/xid/0cq1clws-hpg942


https://wolfram.com/xid/0cq1clws-0hkbzw


https://wolfram.com/xid/0cq1clws-ctca0g

is not surjective for any fixed
:

https://wolfram.com/xid/0cq1clws-kojhy0


https://wolfram.com/xid/0cq1clws-hdm869

JacobiNC is non-negative nor for :

https://wolfram.com/xid/0cq1clws-qbn5zd

In general, it has indeterminate sign:

https://wolfram.com/xid/0cq1clws-fr63pc

JacobiNC is neither convex nor concave:

https://wolfram.com/xid/0cq1clws-8kku21

Differentiation (3)

https://wolfram.com/xid/0cq1clws-mmas49


https://wolfram.com/xid/0cq1clws-nfbe0l


https://wolfram.com/xid/0cq1clws-fxwmfc


https://wolfram.com/xid/0cq1clws-clw10k

Integration (3)
Indefinite integral of JacobiNC:

https://wolfram.com/xid/0cq1clws-zncoi

Definite integral of JacobiNC:

https://wolfram.com/xid/0cq1clws-ft0ejz


https://wolfram.com/xid/0cq1clws-cl496o


https://wolfram.com/xid/0cq1clws-hiyof8

Series Expansions (3)

https://wolfram.com/xid/0cq1clws-ewr1h8

Plot the first three approximations for around
:

https://wolfram.com/xid/0cq1clws-binhar


https://wolfram.com/xid/0cq1clws-c7itxf

Plot the first three approximations for around
:

https://wolfram.com/xid/0cq1clws-jkkunh

JacobiNC can be applied to power series:

https://wolfram.com/xid/0cq1clws-w93ef

Function Identities and Simplifications (3)
Parity transformations and periodicity relations are automatically applied:

https://wolfram.com/xid/0cq1clws-kfx9fu


https://wolfram.com/xid/0cq1clws-lfulkv

Identity involving JacobiSC:

https://wolfram.com/xid/0cq1clws-c26j4j


https://wolfram.com/xid/0cq1clws-d2zh4f


https://wolfram.com/xid/0cq1clws-fqnav3

Function Representations (3)
Representation in terms of Sec of JacobiAmplitude:

https://wolfram.com/xid/0cq1clws-i50rvt

Relation to other Jacobi elliptic functions:

https://wolfram.com/xid/0cq1clws-qkaoa9


https://wolfram.com/xid/0cq1clws-gd2cwv

TraditionalForm formatting:

https://wolfram.com/xid/0cq1clws-e374pd

Applications (5)Sample problems that can be solved with this function
Conformal map from a unit triangle to the unit disk:

https://wolfram.com/xid/0cq1clws-juacs
Show points before and after the map:

https://wolfram.com/xid/0cq1clws-esleon

https://wolfram.com/xid/0cq1clws-cdnd30

Parametrize a lemniscate by arc length:

https://wolfram.com/xid/0cq1clws-nipzfp
Show arc length parametrization and classical parametrization:

https://wolfram.com/xid/0cq1clws-5m82p

https://wolfram.com/xid/0cq1clws-kkuc2

Solution of an anharmonic oscillator :

https://wolfram.com/xid/0cq1clws-e9fb1

https://wolfram.com/xid/0cq1clws-dza6vn

Solution of the field theory wave equation
:

https://wolfram.com/xid/0cq1clws-bg8wc1

https://wolfram.com/xid/0cq1clws-bffr50

Parameterization of Costa's minimal surface [MathWorld]:

https://wolfram.com/xid/0cq1clws-c46jrb

https://wolfram.com/xid/0cq1clws-hltne1

https://wolfram.com/xid/0cq1clws-gqf67w

https://wolfram.com/xid/0cq1clws-i8qrcq

Properties & Relations (2)Properties of the function, and connections to other functions
Compose with inverse functions:

https://wolfram.com/xid/0cq1clws-gf1ye

Use PowerExpand to disregard multivaluedness of the inverse function:

https://wolfram.com/xid/0cq1clws-elv5tn

Solve a transcendental equation:

https://wolfram.com/xid/0cq1clws-be16ux

Possible Issues (2)Common pitfalls and unexpected behavior
Machine-precision input is insufficient to give the correct answer:

https://wolfram.com/xid/0cq1clws-e0lyzh


https://wolfram.com/xid/0cq1clws-8svm2

Currently only simple simplification rules are built in for Jacobi functions:

https://wolfram.com/xid/0cq1clws-fdc0ob


https://wolfram.com/xid/0cq1clws-i8f3c

Wolfram Research (1988), JacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNC.html.
Text
Wolfram Research (1988), JacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNC.html.
Wolfram Research (1988), JacobiNC, Wolfram Language function, https://reference.wolfram.com/language/ref/JacobiNC.html.
CMS
Wolfram Language. 1988. "JacobiNC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiNC.html.
Wolfram Language. 1988. "JacobiNC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/JacobiNC.html.
APA
Wolfram Language. (1988). JacobiNC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiNC.html
Wolfram Language. (1988). JacobiNC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/JacobiNC.html
BibTeX
@misc{reference.wolfram_2025_jacobinc, author="Wolfram Research", title="{JacobiNC}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/JacobiNC.html}", note=[Accessed: 07-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_jacobinc, organization={Wolfram Research}, title={JacobiNC}, year={1988}, url={https://reference.wolfram.com/language/ref/JacobiNC.html}, note=[Accessed: 07-June-2025
]}