LiftingFilterData
represents lifting-filter data used to compute forward and inverse lifting wavelet transforms.
Details and Options
- LiftingFilterData can be produced by WaveletFilterCoefficients from different wavelet families.
- The following wavelet families can be used: BiorthogonalSplineWavelet, CDFWavelet, CoifletWavelet, DaubechiesWavelet, HaarWavelet, ReverseBiorthogonalSplineWavelet, SymletWavelet.
- LiftingFilterData can be used to generate standalone functions that compute forward and inverse lifting wavelet transforms.
- Properties fprop to dynamically generate functions that compute a lifting transform:
-
"ForwardLiftingFunction" function representing forward lifting transform "InverseLiftingFunction" function representing inverse lifting transform "ForwardIntegerLiftingFunction" function representing forward integer lifting transform "InverseIntegerLiftingFunction" function representing inverse integer lifting transform - LiftingFilterData[{fprop,{e,c,d}}] can be used to specify the formal variables in the generated function, where e is the input vector, c is the coarse coefficient vector, and d is the detail coefficient vector.
- LiftingFilterData[fprop,Compiled->copts] can be used to generate a compiled function, where copts are the option values accepted by Compiled.
- Properties related to generating formatted lifting transform equations:
-
"ForwardLiftingTable" forward lifting transform equations "InverseLiftingTable" inverse lifting transform equations "ForwardIntegerLiftingTable" forward integer lifting transform equations "InverseIntegerLiftingTable" inverse integer lifting transform equations - Properties lprop related to lifting factorization:
-
"LiftingLaurentForm" Laurent form representation of lifting equations "LiftingMatrixList" matrix form representation of lifting equations "LiftingMatrixForm" formatted matrix form representation of lifting equations "PolyphaseMatrix" polyphase representation of wavelet family - LiftingFilterData[{lprop,z}] can be used to specify the formal variable in the resulting polynomial and rational formulas.
- Properties related to input wavelet:
-
"DualHighpass" dual highpass filter coefficients "DualLowpass" dual lowpass filter coefficients "PrimalHighpass" primal highpass filter coefficients "PrimalLowpass" primal lowpass filter coefficients "Wavelet" wavelet family used
Examples
open allclose allScope (6)
Use LiftingFilterData to compute LiftingWaveletTransform:
Tabulate lifting transform equations:
Tabulate inverse lifting transform equations:
Generate a function to compute a lifting wavelet transform:
Generate a function to compute an inverse lifting transform:
Tabulate integer lifting transform equations:
Tabulate inverse lifting transform equations:
Generate a function to compute a lifting wavelet transform:
Generate a function to compute an inverse lifting transform:
Generalizations & Extensions (1)
Use LiftingWaveletTransform to compute a lifting transform:
Options (2)
Applications (4)
Create an Executable for a Forward Lifting Transform (1)
Compile a forward lifting transform into a standalone executable:
Load necessary code-generation packages:
Generate forward lifting transform C code:
Load precoded example main code to link the above files:
Generate a data file with first element indicating the dimension of the input vector:
The executable creates an output file with coefficient values:
Create an Executable for an Inverse Lifting Transform (1)
Create an Executable for a Forward Integer Lifting Transform (1)
Compile a forward lifting transform into a standalone executable:
Load necessary code-generation packages:
Generate forward lifting transform C code:
Load precoded example main code to link the above files:
Generate a data file with first element indicating the dimension of the input vector:
The executable creates an output file with coefficient values:
Create an Executable for an Inverse Integer Lifting Transform (1)
Properties & Relations (2)
The determinant of a polyphase matrix is always 1:
Taking a Dot product of matrix representation gives the polyphase matrix:
Text
Wolfram Research (2010), LiftingFilterData, Wolfram Language function, https://reference.wolfram.com/language/ref/LiftingFilterData.html.
CMS
Wolfram Language. 2010. "LiftingFilterData." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LiftingFilterData.html.
APA
Wolfram Language. (2010). LiftingFilterData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LiftingFilterData.html