WOLFRAM

gives the von Mangoldt function .

Details

  • MangoldtLambda is also know as von Mangoldt function.
  • Integer mathematical function, suitable for both symbolic and numerical manipulation.
  • MangoldtLambda[n] gives zero unless n is a prime power, in which case it gives the logarithm of the prime.
  • For a positive integer n= p1k1 pmkm with pi primes, MangoldtLambda[n] returns 0 unless m is equal to 1, in which case it gives Log[p1].

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Compute the Mangoldt function at :

Out[1]=1

Plot the MangoldtLambda sequence for the first 100 numbers:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

Numerical Evaluation  (3)

MangoldtLambda works over integers:

Out[2]=2

Compute for large integers:

Out[1]=1

MangoldtLambda threads over lists:

Out[1]=1

Symbolic Manipulation  (5)

TraditionalForm formatting:

Reduce expressions:

Out[1]=1

Solve equations:

Out[1]=1

Sum of MangoldtLambda over divisors:

Out[1]=1

DirichletTransform of MangoldtLambda:

Out[1]=1

Equivalently:

Out[2]=2

Applications  (5)Sample problems that can be solved with this function

Basic Applications  (3)

Highlight numbers n for which in black, and the prime bases of numbers n for which in red:

Out[8]=8

Compare MangoldtLambda sequence with logarithm function:

Out[1]=1

Plot the second Chebyshev function: [more info]

Demonstrate that it is asymptotic with :

Out[2]=2

Number Theory  (2)

Use MangoldtLambda to test for a prime power:

Out[1]=1
Out[2]=2

Plot an approximation of the number of primes and prime powers using MangoldtLambda and ZetaZero:

Out[2]=2

The more zeros used, the closer the approximation:

Out[3]=3

Properties & Relations  (7)Properties of the function, and connections to other functions

MangoldtLambda gives zero except for prime powers:

Out[1]=1
Out[2]=2

MangoldtLambda is neither additive or multiplicative:

Out[1]=1
Out[2]=2

MangoldtLambda satisfies the identity :

Out[1]=1

Use MoebiusMu to compute MangoldtLambda:

Out[1]=1

Use LCM to compute MangoldtLambda:

Out[1]=1

Compare with:

Out[2]=2

The sum of MangoldtLambda of the first n integers is equal to the natural log of the LCM of the first n integers:

Out[1]=1
Out[2]=2

MangoldtLambda satisfies the following identities:

Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5

Neat Examples  (3)Surprising or curious use cases

Plot MangoldtLambda for the sum of two squares:

Out[1]=1

Plot the arguments of the Fourier transform of MangoldtLambda:

Out[1]=1

Plot the Ulam spiral of MangoldtLambda:

Out[2]=2
Wolfram Research (2008), MangoldtLambda, Wolfram Language function, https://reference.wolfram.com/language/ref/MangoldtLambda.html.
Wolfram Research (2008), MangoldtLambda, Wolfram Language function, https://reference.wolfram.com/language/ref/MangoldtLambda.html.

Text

Wolfram Research (2008), MangoldtLambda, Wolfram Language function, https://reference.wolfram.com/language/ref/MangoldtLambda.html.

Wolfram Research (2008), MangoldtLambda, Wolfram Language function, https://reference.wolfram.com/language/ref/MangoldtLambda.html.

CMS

Wolfram Language. 2008. "MangoldtLambda." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MangoldtLambda.html.

Wolfram Language. 2008. "MangoldtLambda." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MangoldtLambda.html.

APA

Wolfram Language. (2008). MangoldtLambda. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MangoldtLambda.html

Wolfram Language. (2008). MangoldtLambda. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MangoldtLambda.html

BibTeX

@misc{reference.wolfram_2025_mangoldtlambda, author="Wolfram Research", title="{MangoldtLambda}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/MangoldtLambda.html}", note=[Accessed: 09-May-2025 ]}

@misc{reference.wolfram_2025_mangoldtlambda, author="Wolfram Research", title="{MangoldtLambda}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/MangoldtLambda.html}", note=[Accessed: 09-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_mangoldtlambda, organization={Wolfram Research}, title={MangoldtLambda}, year={2008}, url={https://reference.wolfram.com/language/ref/MangoldtLambda.html}, note=[Accessed: 09-May-2025 ]}

@online{reference.wolfram_2025_mangoldtlambda, organization={Wolfram Research}, title={MangoldtLambda}, year={2008}, url={https://reference.wolfram.com/language/ref/MangoldtLambda.html}, note=[Accessed: 09-May-2025 ]}