MardiaCombinedTest
✖
MardiaCombinedTest
tests whether data follows a MultinormalDistribution using the Mardia combined test.
Details and Options


- MardiaCombinedTest performs a goodness-of-fit test with null hypothesis
that data was drawn from a MultinormalDistribution and alternative hypothesis
that it was not.
- By default, a probability value or
-value is returned.
- A small
-value suggests that it is unlikely that the data is normally distributed.
- The data can be univariate {x1,x2,…} or multivariate {{x1,y1,…},{x2,y2,…},…}.
- The Mardia combined test effectively pools the results from MardiaSkewnessTest and MardiaKurtosisTest.
- MardiaCombinedTest[data,dist,"HypothesisTestData"] returns a HypothesisTestData object htd that can be used to extract additional test results and properties using the form htd["property"].
- MardiaCombinedTest[data,dist,"property"] can be used to directly give the value of "property".
- Properties related to the reporting of test results include:
-
"DegreesOfFreedom" the degrees of freedom used in a test "PValue" -value
"PValueTable" formatted version of "PValue" "ShortTestConclusion" a short description of the conclusion of a test "TestConclusion" a description of the conclusion of a test "TestData" test statistic and -value
"TestDataTable" formatted version of "TestData" "TestStatistic" test statistic "TestStatisticTable" formatted "TestStatistic" - The following properties are independent of which test is being performed.
- Properties related to the data distribution include:
-
"FittedDistribution" fitted distribution of data "FittedDistributionParameters" distribution parameters of data - The following options can be given:
-
Method Automatic the method to use for computing -values
SignificanceLevel 0.05 cutoff for diagnostics and reporting - For a test for goodness of fit, a cutoff
is chosen such that
is rejected only if
. The value of
used for the "TestConclusion" and "ShortTestConclusion" properties is controlled by the SignificanceLevel option. By default,
is set to 0.05.
- With the setting Method->"MonteCarlo",
datasets of the same length as the input
are generated under
using the fitted distribution. The EmpiricalDistribution from MardiaCombinedTest[si,"TestStatistic"] is then used to estimate the
-value.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Perform a test for multivariate normality:

https://wolfram.com/xid/01la8cwjkiw46mp3q-ijo5

https://wolfram.com/xid/01la8cwjkiw46mp3q-hnfx0t


https://wolfram.com/xid/01la8cwjkiw46mp3q-dfzlwy

Extract the test statistic from the Mardia combined test:

https://wolfram.com/xid/01la8cwjkiw46mp3q-m3chh3

https://wolfram.com/xid/01la8cwjkiw46mp3q-cm7ucc

Obtain a formatted test table:

https://wolfram.com/xid/01la8cwjkiw46mp3q-p7hfx

https://wolfram.com/xid/01la8cwjkiw46mp3q-cr9vsu

Scope (5)Survey of the scope of standard use cases
Testing (2)
Perform a Mardia test for multivariate normality:

https://wolfram.com/xid/01la8cwjkiw46mp3q-lqxbgq
The -value for the normal data is large compared to the
-value for the non-normal data:

https://wolfram.com/xid/01la8cwjkiw46mp3q-mks25


https://wolfram.com/xid/01la8cwjkiw46mp3q-kjd2s

Create a HypothesisTestData object for repeated property extraction:

https://wolfram.com/xid/01la8cwjkiw46mp3q-cdnr2n

https://wolfram.com/xid/01la8cwjkiw46mp3q-bolz27

The properties available for extraction:

https://wolfram.com/xid/01la8cwjkiw46mp3q-e40fsc

Reporting (3)
Tabulate the results of the Mardia combined test:

https://wolfram.com/xid/01la8cwjkiw46mp3q-cqxopz

https://wolfram.com/xid/01la8cwjkiw46mp3q-be6kk1

https://wolfram.com/xid/01la8cwjkiw46mp3q-ef4et7


https://wolfram.com/xid/01la8cwjkiw46mp3q-bfqugt


https://wolfram.com/xid/01la8cwjkiw46mp3q-oi9r56

Retrieve the entries from a Mardia combined test table for custom reporting:

https://wolfram.com/xid/01la8cwjkiw46mp3q-s3qsd

https://wolfram.com/xid/01la8cwjkiw46mp3q-ga3bij


https://wolfram.com/xid/01la8cwjkiw46mp3q-gg2n22


https://wolfram.com/xid/01la8cwjkiw46mp3q-65k71

Report test conclusions using "ShortTestConclusion" and "TestConclusion":

https://wolfram.com/xid/01la8cwjkiw46mp3q-bkir6y

https://wolfram.com/xid/01la8cwjkiw46mp3q-cd96sm

https://wolfram.com/xid/01la8cwjkiw46mp3q-ggy9zn


https://wolfram.com/xid/01la8cwjkiw46mp3q-el9mb

The conclusion may differ at a different significance level:

https://wolfram.com/xid/01la8cwjkiw46mp3q-c53cri

https://wolfram.com/xid/01la8cwjkiw46mp3q-byyexa


https://wolfram.com/xid/01la8cwjkiw46mp3q-bc67bi

Options (4)Common values & functionality for each option
Method (3)
Use Monte Carlo-based methods or a computation formula:

https://wolfram.com/xid/01la8cwjkiw46mp3q-b56tvj

https://wolfram.com/xid/01la8cwjkiw46mp3q-eyrfe


https://wolfram.com/xid/01la8cwjkiw46mp3q-evuhgg

Set the number of samples to use for Monte Carlo-based methods:

https://wolfram.com/xid/01la8cwjkiw46mp3q-xg6xc

https://wolfram.com/xid/01la8cwjkiw46mp3q-499mh
The Monte Carlo estimate converges to the true -value with increasing samples:

https://wolfram.com/xid/01la8cwjkiw46mp3q-eli8sg

https://wolfram.com/xid/01la8cwjkiw46mp3q-ba5c5u

Set the random seed used in Monte Carlo-based methods:

https://wolfram.com/xid/01la8cwjkiw46mp3q-ccet45

https://wolfram.com/xid/01la8cwjkiw46mp3q-ip8pt1
The seed affects the state of the generator and has some effect on the resulting -value:

https://wolfram.com/xid/01la8cwjkiw46mp3q-go8plt

https://wolfram.com/xid/01la8cwjkiw46mp3q-pfg0ok

SignificanceLevel (1)
Set the significance level used for "TestConclusion" and "ShortTestConclusion":

https://wolfram.com/xid/01la8cwjkiw46mp3q-kj9pa

https://wolfram.com/xid/01la8cwjkiw46mp3q-qafg


https://wolfram.com/xid/01la8cwjkiw46mp3q-bu4h57


https://wolfram.com/xid/01la8cwjkiw46mp3q-b50sx2

Applications (2)Sample problems that can be solved with this function
A power curve for the Mardia combined test:

https://wolfram.com/xid/01la8cwjkiw46mp3q-f9ry9j

https://wolfram.com/xid/01la8cwjkiw46mp3q-bhp5v

https://wolfram.com/xid/01la8cwjkiw46mp3q-fyqopk
Visualize the approximate power curve:

https://wolfram.com/xid/01la8cwjkiw46mp3q-eel2vq

Estimate the power of the Mardia combined test when the underlying distribution is a MultivariateTDistribution, the test size is 0.05, and the sample size is 12:

https://wolfram.com/xid/01la8cwjkiw46mp3q-z6f7c

Five morphological measures were recorded for two separate varieties of a crab species. A researcher hopes to simultaneously compare all the measures across the species using multivariate analysis of variance, which requires that the data is multivariate normal:

https://wolfram.com/xid/01la8cwjkiw46mp3q-k2w6px

https://wolfram.com/xid/01la8cwjkiw46mp3q-9eqgxb


https://wolfram.com/xid/01la8cwjkiw46mp3q-dwl2bl
Use MardiaCombinedTest to determine if both sets of data are multivariate normal:

https://wolfram.com/xid/01la8cwjkiw46mp3q-pheluk


https://wolfram.com/xid/01la8cwjkiw46mp3q-bkgw16

Univariate density estimates of the five measures for each species:

https://wolfram.com/xid/01la8cwjkiw46mp3q-eg3o0g

https://wolfram.com/xid/01la8cwjkiw46mp3q-bxncu5

The deviation from normality appears to be in the skewness:

https://wolfram.com/xid/01la8cwjkiw46mp3q-qzq80f


https://wolfram.com/xid/01la8cwjkiw46mp3q-eyjyx

Properties & Relations (3)Properties of the function, and connections to other functions
The multivariate test statistic:

https://wolfram.com/xid/01la8cwjkiw46mp3q-et46gq

https://wolfram.com/xid/01la8cwjkiw46mp3q-mvgdy

https://wolfram.com/xid/01la8cwjkiw46mp3q-e2j9t7


https://wolfram.com/xid/01la8cwjkiw46mp3q-dpmzkv

Under , the test statistic asymptotically follows a ChiSquareDistribution:

https://wolfram.com/xid/01la8cwjkiw46mp3q-jxo3sh

https://wolfram.com/xid/01la8cwjkiw46mp3q-q4iyo4

https://wolfram.com/xid/01la8cwjkiw46mp3q-fl2g5b

For univariate data, the test is equivalent to the JarqueBeraALMTest:

https://wolfram.com/xid/01la8cwjkiw46mp3q-gih5gu

https://wolfram.com/xid/01la8cwjkiw46mp3q-bvdksn


https://wolfram.com/xid/01la8cwjkiw46mp3q-mmzpw

The Mardia combined test works with the values only when the input is a TimeSeries:

https://wolfram.com/xid/01la8cwjkiw46mp3q-7py5sj

https://wolfram.com/xid/01la8cwjkiw46mp3q-of2jx


https://wolfram.com/xid/01la8cwjkiw46mp3q-57bf57


https://wolfram.com/xid/01la8cwjkiw46mp3q-vvd88

Possible Issues (1)Common pitfalls and unexpected behavior
If the covariance matrix of the data is not positive definite, the test will fail:

https://wolfram.com/xid/01la8cwjkiw46mp3q-e2fnxq

https://wolfram.com/xid/01la8cwjkiw46mp3q-dmqkla


https://wolfram.com/xid/01la8cwjkiw46mp3q-k118o6


The number of data points must be greater than the dimension of the data:

https://wolfram.com/xid/01la8cwjkiw46mp3q-0q09i


https://wolfram.com/xid/01la8cwjkiw46mp3q-0curas


https://wolfram.com/xid/01la8cwjkiw46mp3q-wlr4s0

Neat Examples (1)Surprising or curious use cases
Compute the statistic when the null hypothesis is true:

https://wolfram.com/xid/01la8cwjkiw46mp3q-2qqg3c

https://wolfram.com/xid/01la8cwjkiw46mp3q-ywy3ty
The test statistic given a particular alternative:

https://wolfram.com/xid/01la8cwjkiw46mp3q-612aqt

https://wolfram.com/xid/01la8cwjkiw46mp3q-c5cy2n
Compare the distributions of the test statistics:

https://wolfram.com/xid/01la8cwjkiw46mp3q-87eb6q

Wolfram Research (2010), MardiaCombinedTest, Wolfram Language function, https://reference.wolfram.com/language/ref/MardiaCombinedTest.html.
Text
Wolfram Research (2010), MardiaCombinedTest, Wolfram Language function, https://reference.wolfram.com/language/ref/MardiaCombinedTest.html.
Wolfram Research (2010), MardiaCombinedTest, Wolfram Language function, https://reference.wolfram.com/language/ref/MardiaCombinedTest.html.
CMS
Wolfram Language. 2010. "MardiaCombinedTest." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MardiaCombinedTest.html.
Wolfram Language. 2010. "MardiaCombinedTest." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MardiaCombinedTest.html.
APA
Wolfram Language. (2010). MardiaCombinedTest. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MardiaCombinedTest.html
Wolfram Language. (2010). MardiaCombinedTest. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MardiaCombinedTest.html
BibTeX
@misc{reference.wolfram_2025_mardiacombinedtest, author="Wolfram Research", title="{MardiaCombinedTest}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/MardiaCombinedTest.html}", note=[Accessed: 30-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_mardiacombinedtest, organization={Wolfram Research}, title={MardiaCombinedTest}, year={2010}, url={https://reference.wolfram.com/language/ref/MardiaCombinedTest.html}, note=[Accessed: 30-April-2025
]}