ScorerHiPrime

ScorerHiPrime[z]

gives the derivative of the Scorer function .

Details

Examples

open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (31)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around:

Compute the elementwise values of an array:

Or compute the matrix ScorerHiPrime function using MatrixFunction:

Specific Values  (3)

Simple exact values are generated automatically:

Limiting values at infinity:

Find a value of x for which ScorerHiPrime[x]=4:

Visualization  (2)

Plot the ScorerHiPrime function:

Plot the real part of TemplateBox[{z}, ScorerHiPrime]:

Plot the imaginary part of TemplateBox[{z}, ScorerHiPrime]:

Function Properties  (11)

Real domain of ScorerHiPrime:

Complex domain:

Approximate function range of ScorerHiPrime:

ScorerHiPrime threads elementwise over lists:

ScorerHiPrime is an analytic function of x:

ScorerHiPrime is nondecreasing:

ScorerHiPrime is injective:

ScorerHiPrime is not surjective:

ScorerHiPrime is non-negative:

ScorerHiPrime does not have either singularity or discontinuity:

ScorerHiPrime is convex:

TraditionalForm typesetting:

Differentiation and Integration  (4)

First derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z:

Formula for the ^(th) derivative with respect to z:

Indefinite integral of ScorerHiPrime:

Series Expansions  (2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Taylor expansion at a generic point:

Function Identities and Simplifications  (3)

FunctionExpand tries to simplify the argument of ScorerHiPrime:

Functional identity:

ScorerHiPrime can be represented as a DifferentialRoot:

Wolfram Research (2014), ScorerHiPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/ScorerHiPrime.html.

Text

Wolfram Research (2014), ScorerHiPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/ScorerHiPrime.html.

CMS

Wolfram Language. 2014. "ScorerHiPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ScorerHiPrime.html.

APA

Wolfram Language. (2014). ScorerHiPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ScorerHiPrime.html

BibTeX

@misc{reference.wolfram_2024_scorerhiprime, author="Wolfram Research", title="{ScorerHiPrime}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/ScorerHiPrime.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_scorerhiprime, organization={Wolfram Research}, title={ScorerHiPrime}, year={2014}, url={https://reference.wolfram.com/language/ref/ScorerHiPrime.html}, note=[Accessed: 21-January-2025 ]}