SpheroidalPS
✖
SpheroidalPS
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- The angular spheroidal functions satisfy the differential equation
with the spheroidal eigenvalue
given by SpheroidalEigenvalue[n,m,γ].
- SpheroidalPS[n,m,0,z] is equivalent to LegendreP[n,m,z].
- SpheroidalPS[n,m,a,γ,z] gives spheroidal functions of type
. The types are specified as for LegendreP.
- For certain special arguments, SpheroidalPS automatically evaluates to exact values.
- SpheroidalPS can be evaluated to arbitrary numerical precision.
- SpheroidalPS automatically threads over lists. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0rsrcjebs-zznfb

Expansion about the spherical case:

https://wolfram.com/xid/0rsrcjebs-cqqk8s

Plot over a subset of the reals:

https://wolfram.com/xid/0rsrcjebs-dta4sp

Series expansion at the origin:

https://wolfram.com/xid/0rsrcjebs-d4eg3m

Series expansion at Infinity:

https://wolfram.com/xid/0rsrcjebs-20imb

Series expansion at a singular point:

https://wolfram.com/xid/0rsrcjebs-fpch

Scope (25)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0rsrcjebs-l274ju


https://wolfram.com/xid/0rsrcjebs-cksbl4


https://wolfram.com/xid/0rsrcjebs-b0wt9


https://wolfram.com/xid/0rsrcjebs-zn1q5

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0rsrcjebs-y7k4a


https://wolfram.com/xid/0rsrcjebs-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0rsrcjebs-di5gcr


https://wolfram.com/xid/0rsrcjebs-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0rsrcjebs-thgd2

Or compute the matrix SpheroidalPS function using MatrixFunction:

https://wolfram.com/xid/0rsrcjebs-o5jpo

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0rsrcjebs-cw18bq

Specific Values (4)

https://wolfram.com/xid/0rsrcjebs-fc9m8o

Find the first positive minimum of SpheroidalPS[4,0,1/2,x]:

https://wolfram.com/xid/0rsrcjebs-f2hrld


https://wolfram.com/xid/0rsrcjebs-jka6gz

Evaluate the SpheroidalPS function for half-integer parameters:

https://wolfram.com/xid/0rsrcjebs-hfz8z6


https://wolfram.com/xid/0rsrcjebs-z0hsd

Different SpheroidalPS types give different symbolic forms:

https://wolfram.com/xid/0rsrcjebs-chhice

Visualization (3)
Plot the SpheroidalPS function for various orders:

https://wolfram.com/xid/0rsrcjebs-ecj8m7


https://wolfram.com/xid/0rsrcjebs-j0a1e3


https://wolfram.com/xid/0rsrcjebs-0ykdg

Types 2 and 3 of SpheroidalPS functions have different branch cut structures:

https://wolfram.com/xid/0rsrcjebs-dum9su


https://wolfram.com/xid/0rsrcjebs-dgvzwe

Function Properties (8)

https://wolfram.com/xid/0rsrcjebs-cl7ele


https://wolfram.com/xid/0rsrcjebs-fsg5r8

is an even function with respect to
:

https://wolfram.com/xid/0rsrcjebs-dnla5q


https://wolfram.com/xid/0rsrcjebs-heoddu

has no singularities or discontinuities:

https://wolfram.com/xid/0rsrcjebs-mdtl3h


https://wolfram.com/xid/0rsrcjebs-882yap

is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0rsrcjebs-nlz7s


https://wolfram.com/xid/0rsrcjebs-poz8g


https://wolfram.com/xid/0rsrcjebs-ctca0g

is neither non-negative nor non-positive:

https://wolfram.com/xid/0rsrcjebs-84dui

TraditionalForm formatting:

https://wolfram.com/xid/0rsrcjebs-ddr9mu

Differentiation (2)
The first derivative with respect to z:

https://wolfram.com/xid/0rsrcjebs-krpoah

Higher derivatives with respect to z:

https://wolfram.com/xid/0rsrcjebs-z33jv

Plot the higher derivatives with respect to z when n=10, m=2 and γ=1/3:

https://wolfram.com/xid/0rsrcjebs-fxwmfc

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0rsrcjebs-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0rsrcjebs-b6vkb1

The Taylor expansion at a generic point:

https://wolfram.com/xid/0rsrcjebs-jwxla7

Generalizations & Extensions (1)Generalized and extended use cases
The different types of SpheroidalPS have different branch cut structures:

https://wolfram.com/xid/0rsrcjebs-cizk9j


https://wolfram.com/xid/0rsrcjebs-j2nz3e

Applications (4)Sample problems that can be solved with this function
Solve the spheroidal differential equation in terms of SpheroidalPS:

https://wolfram.com/xid/0rsrcjebs-e634zg

Plot prolate and oblate versions of the same angular function:

https://wolfram.com/xid/0rsrcjebs-k81b48

SpheroidalPS is a band-limited function with bandwidth proportional to :

https://wolfram.com/xid/0rsrcjebs-klfzkv

https://wolfram.com/xid/0rsrcjebs-dj1vkq

For spheroidicity parameter , the bandwidth is higher:

https://wolfram.com/xid/0rsrcjebs-emmav3

Build a near-spherical approximation to :

https://wolfram.com/xid/0rsrcjebs-gzcleh
First few terms of the approximation:

https://wolfram.com/xid/0rsrcjebs-b4ghrk


https://wolfram.com/xid/0rsrcjebs-cjl5gk

Properties & Relations (1)Properties of the function, and connections to other functions
Spheroidal angular harmonics are eigenfunctions of the Sinc transform on the interval :

https://wolfram.com/xid/0rsrcjebs-dbsamh

Possible Issues (2)Common pitfalls and unexpected behavior
Spheroidal functions do not evaluate for half-integer values of or generic values of
:

https://wolfram.com/xid/0rsrcjebs-c6p1oc

Angular spheroidal harmonics in the Wolfram Language adopt the Meixner–Schaefke normalization scheme:

https://wolfram.com/xid/0rsrcjebs-jpma


https://wolfram.com/xid/0rsrcjebs-d38oum

Flammer normalization is also common:

https://wolfram.com/xid/0rsrcjebs-bk0zqp
Reconstruct table entries from Abramowitz and Stegun table 21.2:

https://wolfram.com/xid/0rsrcjebs-c9j7p


https://wolfram.com/xid/0rsrcjebs-bn466f

Wolfram Research (2007), SpheroidalPS, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPS.html.
Text
Wolfram Research (2007), SpheroidalPS, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPS.html.
Wolfram Research (2007), SpheroidalPS, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPS.html.
CMS
Wolfram Language. 2007. "SpheroidalPS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPS.html.
Wolfram Language. 2007. "SpheroidalPS." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPS.html.
APA
Wolfram Language. (2007). SpheroidalPS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPS.html
Wolfram Language. (2007). SpheroidalPS. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPS.html
BibTeX
@misc{reference.wolfram_2025_spheroidalps, author="Wolfram Research", title="{SpheroidalPS}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalPS.html}", note=[Accessed: 03-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_spheroidalps, organization={Wolfram Research}, title={SpheroidalPS}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalPS.html}, note=[Accessed: 03-May-2025
]}