WOLFRAM

SpheroidalPSPrime[n,m,γ,z]

gives the derivative with respect to of the angular spheroidal function of the first kind.

Details

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Expansion about the spherical case:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Series expansion at Infinity:

Out[1]=1

Series expansion at a singular point:

Out[1]=1

Scope  (28)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically:

Out[1]=1
Out[2]=2

Evaluate to high precision:

Out[1]=1
Out[2]=2

The precision of the output tracks the precision of the input:

Out[3]=3

Complex number inputs:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Compute the elementwise values of an array using automatic threading:

Out[1]=1

Or compute the matrix SpheroidalPSPrime function using MatrixFunction:

Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Specific Values  (4)

Evaluate symbolically:

Out[1]=1

Find the first positive minimum of SpheroidalPSPrime[4,0,1/2,x]:

Out[1]=1
Out[2]=2

Evaluate the SpheroidalPSPrime function for half-integer parameters:

Out[1]=1
Out[2]=2

Different SpheroidalPSPrime types give different symbolic forms:

Out[1]=1

Visualization  (3)

Plot the SpheroidalPSPrime function for various orders:

Out[1]=1

Plot the real part of TemplateBox[{3, 0, 1, z}, SpheroidalPSPrime]:

Out[1]=1

Plot the imaginary part of TemplateBox[{3, 0, 1, z}, SpheroidalPSPrime]:

Out[2]=2

Types 2 and 3 of SpheroidalPSPrime functions have different branch cut structures:

Out[1]=1
Out[2]=2

Function Properties  (8)

The real domain of TemplateBox[{1, 2, 2, x}, SpheroidalPSPrime]:

Out[1]=1

The complex domain of TemplateBox[{1, 2, 2, x}, SpheroidalPSPrime]:

Out[2]=2

TemplateBox[{1, 2, gamma, 3}, SpheroidalPSPrime] is an even function with respect to :

Out[1]=1

TemplateBox[{1, 2, 3, z}, SpheroidalPSPrime] has the mirror property TemplateBox[{1, 2, 3, {z, }}, SpheroidalPSPrime]=TemplateBox[{1, 2, 3, z}, SpheroidalPSPrime]:

Out[1]=1

TemplateBox[{1, 0, 1, x}, SpheroidalPSPrime] has no singularities or discontinuities:

Out[1]=1
Out[2]=2

TemplateBox[{1, 0, 1, x}, SpheroidalPSPrime] is neither non-decreasing nor non-increasing:

Out[1]=1
Out[2]=2

TemplateBox[{1, 0, 1, x}, SpheroidalPSPrime] is not injective:

Out[1]=1
Out[2]=2

TemplateBox[{2, 0, 1, x}, SpheroidalPSPrime] is neither non-negative nor non-positive:

Out[1]=1

TraditionalForm formatting:

Differentiation  (2)

The first derivative with respect to z:

Out[1]=1

Higher derivatives with respect to z:

Out[1]=1

Plot the higher derivatives with respect to z when n=10, m=2 and γ=1/3:

Out[2]=2

Integration  (3)

Compute the indefinite integral using Integrate:

Out[1]=1

Verify the anti-derivative:

Out[2]=2

Definite integral:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2

Series Expansions  (2)

Find the Taylor expansion using Series:

Out[1]=1

Plots of the first three approximations around :

Out[6]=6

The Taylor expansion at a generic point:

Out[1]=1

Generalizations & Extensions  (1)Generalized and extended use cases

SpheroidalPSPrime of different types have different branch cut structures:

Out[1]=1
Out[2]=2

Applications  (1)Sample problems that can be solved with this function

Plot prolate and oblate versions of the same angular function:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

Spheroidal functions do not evaluate for half-integer values of n and generic values of m:

Out[1]=1
Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.

Text

Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.

Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.

CMS

Wolfram Language. 2007. "SpheroidalPSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.

Wolfram Language. 2007. "SpheroidalPSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.

APA

Wolfram Language. (2007). SpheroidalPSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html

Wolfram Language. (2007). SpheroidalPSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html

BibTeX

@misc{reference.wolfram_2025_spheroidalpsprime, author="Wolfram Research", title="{SpheroidalPSPrime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}", note=[Accessed: 07-June-2025 ]}

@misc{reference.wolfram_2025_spheroidalpsprime, author="Wolfram Research", title="{SpheroidalPSPrime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}", note=[Accessed: 07-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_spheroidalpsprime, organization={Wolfram Research}, title={SpheroidalPSPrime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}, note=[Accessed: 07-June-2025 ]}

@online{reference.wolfram_2025_spheroidalpsprime, organization={Wolfram Research}, title={SpheroidalPSPrime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}, note=[Accessed: 07-June-2025 ]}