SpheroidalPSPrime
✖
SpheroidalPSPrime
gives the derivative with respect to of the angular spheroidal function
of the first kind.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- SpheroidalPSPrime[n,m,a,γ,z] uses spheroidal functions of type
. The types are specified as for SpheroidalPS.
- For certain special arguments, SpheroidalPSPrime automatically evaluates to exact values.
- SpheroidalPSPrime can be evaluated to arbitrary numerical precision.
- SpheroidalPSPrime automatically threads over lists. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0yvv03ryopey-zznfb

Expansion about the spherical case:

https://wolfram.com/xid/0yvv03ryopey-cqqk8s

Plot over a subset of the reals:

https://wolfram.com/xid/0yvv03ryopey-dta4sp

Series expansion at the origin:

https://wolfram.com/xid/0yvv03ryopey-d4eg3m

Series expansion at Infinity:

https://wolfram.com/xid/0yvv03ryopey-20imb

Series expansion at a singular point:

https://wolfram.com/xid/0yvv03ryopey-kum9tq

Scope (28)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0yvv03ryopey-l274ju


https://wolfram.com/xid/0yvv03ryopey-whe1w


https://wolfram.com/xid/0yvv03ryopey-b0wt9


https://wolfram.com/xid/0yvv03ryopey-zn1q5

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0yvv03ryopey-y7k4a


https://wolfram.com/xid/0yvv03ryopey-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0yvv03ryopey-di5gcr


https://wolfram.com/xid/0yvv03ryopey-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0yvv03ryopey-thgd2

Or compute the matrix SpheroidalPSPrime function using MatrixFunction:

https://wolfram.com/xid/0yvv03ryopey-o5jpo

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0yvv03ryopey-cw18bq

Specific Values (4)

https://wolfram.com/xid/0yvv03ryopey-fc9m8o

Find the first positive minimum of SpheroidalPSPrime[4,0,1/2,x]:

https://wolfram.com/xid/0yvv03ryopey-f2hrld


https://wolfram.com/xid/0yvv03ryopey-lcbpk

Evaluate the SpheroidalPSPrime function for half-integer parameters:

https://wolfram.com/xid/0yvv03ryopey-hfz8z6


https://wolfram.com/xid/0yvv03ryopey-z0hsd

Different SpheroidalPSPrime types give different symbolic forms:

https://wolfram.com/xid/0yvv03ryopey-chhice

Visualization (3)
Plot the SpheroidalPSPrime function for various orders:

https://wolfram.com/xid/0yvv03ryopey-ecj8m7


https://wolfram.com/xid/0yvv03ryopey-0ykdg


https://wolfram.com/xid/0yvv03ryopey-eo34i2

Types 2 and 3 of SpheroidalPSPrime functions have different branch cut structures:

https://wolfram.com/xid/0yvv03ryopey-dum9su


https://wolfram.com/xid/0yvv03ryopey-dgvzwe

Function Properties (8)

https://wolfram.com/xid/0yvv03ryopey-cl7ele


https://wolfram.com/xid/0yvv03ryopey-fsg5r8

is an even function with respect to
:

https://wolfram.com/xid/0yvv03ryopey-dnla5q


https://wolfram.com/xid/0yvv03ryopey-heoddu

has no singularities or discontinuities:

https://wolfram.com/xid/0yvv03ryopey-mdtl3h


https://wolfram.com/xid/0yvv03ryopey-mn5jws

is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0yvv03ryopey-nlz7s


https://wolfram.com/xid/0yvv03ryopey-5ykmxb


https://wolfram.com/xid/0yvv03ryopey-poz8g


https://wolfram.com/xid/0yvv03ryopey-ctca0g

is neither non-negative nor non-positive:

https://wolfram.com/xid/0yvv03ryopey-84dui

TraditionalForm formatting:

https://wolfram.com/xid/0yvv03ryopey-ddr9mu

Differentiation (2)
The first derivative with respect to z:

https://wolfram.com/xid/0yvv03ryopey-krpoah

Higher derivatives with respect to z:

https://wolfram.com/xid/0yvv03ryopey-z33jv

Plot the higher derivatives with respect to z when n=10, m=2 and γ=1/3:

https://wolfram.com/xid/0yvv03ryopey-fxwmfc

Integration (3)
Compute the indefinite integral using Integrate:

https://wolfram.com/xid/0yvv03ryopey-bponid


https://wolfram.com/xid/0yvv03ryopey-op9yly


https://wolfram.com/xid/0yvv03ryopey-bfdh5d


https://wolfram.com/xid/0yvv03ryopey-4nbst


https://wolfram.com/xid/0yvv03ryopey-yncg8

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0yvv03ryopey-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0yvv03ryopey-ezosl2

The Taylor expansion at a generic point:

https://wolfram.com/xid/0yvv03ryopey-jwxla7

Generalizations & Extensions (1)Generalized and extended use cases
SpheroidalPSPrime of different types have different branch cut structures:

https://wolfram.com/xid/0yvv03ryopey-cizk9j


https://wolfram.com/xid/0yvv03ryopey-j2nz3e

Applications (1)Sample problems that can be solved with this function
Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
Text
Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
Wolfram Research (2007), SpheroidalPSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
CMS
Wolfram Language. 2007. "SpheroidalPSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
Wolfram Language. 2007. "SpheroidalPSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html.
APA
Wolfram Language. (2007). SpheroidalPSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html
Wolfram Language. (2007). SpheroidalPSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html
BibTeX
@misc{reference.wolfram_2025_spheroidalpsprime, author="Wolfram Research", title="{SpheroidalPSPrime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}", note=[Accessed: 07-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_spheroidalpsprime, organization={Wolfram Research}, title={SpheroidalPSPrime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalPSPrime.html}, note=[Accessed: 07-June-2025
]}