# SpheroidalS2Prime

SpheroidalS2Prime[n,m,γ,z]

gives the derivative with respect to of the radial spheroidal function of the second kind.

# Details

• Mathematical function, suitable for both symbolic and numerical manipulation.
• For certain special arguments, SpheroidalS2Prime automatically evaluates to exact values.
• SpheroidalS2Prime can be evaluated to arbitrary numerical precision.
• SpheroidalS2Prime automatically threads over lists.

# Examples

open allclose all

## Basic Examples(5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at a singular point:

## Scope(23)

### Numerical Evaluation(4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

### Specific Values(5)

Simple exact values are generated automatically:

Singular points:

Find the first positive maximum of SpheroidalS2Prime[2,0,5,x]:

SpheroidalS2Prime functions become elementary if and :

### Visualization(3)

Plot the SpheroidalS2Prime function for integer orders:

Plot the SpheroidalS2Prime function for non-integer parameters:

Plot the real part of SpheroidalS2Prime:

Plot the imaginary part of SpheroidalS2Prime:

### Function Properties(5)

SpheroidalS2Prime is not an analytic function:

has both singularities and discontinuities for :

is neither non-decreasing nor non-increasing:

is not injective:

SpheroidalS2Prime is neither non-negative nor non-positive:

SpheroidalS2Prime is neither convex nor concave:

### Differentiation(2)

First derivative with respect to :

Higher derivatives with respect to :

Plot the higher derivatives with respect to when , and :

### Integration(2)

Compute the indefinite integral using Integrate:

Verify the anti-derivative:

Definite integral:

### Series Expansions(2)

Find the Taylor expansion using Series:

Plots of the first three approximations around :

Taylor expansion at a generic point:

## Properties & Relations(1)

Spheroidal functions do not evaluate for half-integer values of and generic values of :

Wolfram Research (2007), SpheroidalS2Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.

#### Text

Wolfram Research (2007), SpheroidalS2Prime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.

#### CMS

Wolfram Language. 2007. "SpheroidalS2Prime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html.

#### APA

Wolfram Language. (2007). SpheroidalS2Prime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html

#### BibTeX

@misc{reference.wolfram_2022_spheroidals2prime, author="Wolfram Research", title="{SpheroidalS2Prime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html}", note=[Accessed: 01-June-2023 ]}

#### BibLaTeX

@online{reference.wolfram_2022_spheroidals2prime, organization={Wolfram Research}, title={SpheroidalS2Prime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalS2Prime.html}, note=[Accessed: 01-June-2023 ]}