SystemsModelFeedbackConnect
✖
SystemsModelFeedbackConnect
connects the outputs from sys to the inputs with negative feedback.
connects the outputs of sys1 to sys2 and the outputs of sys2 to the inputs of sys1 in feedback.
connects output outi of sys1 to the i input of sys2 and the j
output of sys2 to input inj of sys1 with feedback type ftypej.
Details

- The systems model sysi can be a TransferFunctionModel, StateSpaceModel, AffineStateSpaceModel, or NonlinearStateSpaceModel.
- Connections coni can be given as:
-
{out,in} connect output out to input in in negative feedback {out,in,ftype} use positive or negative feedback type ftype - By default, sys2 is a unity gain system.
- The arguments in, out, ini, and outi are integers specifying the positions of the input or output channels.
- The ftype can be specified as "Negative" or -1 for negative feedback, and "Positive" or 1 for positive feedback. The default type is "Negative".

Examples
open allclose allBasic Examples (6)Summary of the most common use cases
A transfer function with negative unity feedback:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-dk1x8j

Connect two continuous-time systems in negative feedback:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-j4bnlb

Connect two discrete-time systems in negative feedback:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-bpcetx

A state-space system with negative feedback:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-bdvwjq

Connect two state-space systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-e2pb9c

Feedback the second output to the first input:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-tn473p

Scope (18)Survey of the scope of standard use cases
Basic Uses (10)
A unity negative feedback system:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-3gfa3b


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-r5p0wo


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-d3i6bx

Connect multivariable systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-e9tzx8

Connect the second output to the first input:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-h9p2tg

Connect the second output to the first input through a feedback system:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-cjmtpx

Connect discrete-time systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-c75cik

Connect two systems in positive feedback:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-1d3m3

Connect two state-space models as shown in the diagram:


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-kd2h0m

Connect a StateSpaceModel to a TransferFunctionModel:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-g6eoec

System Types (8)
Connect two TransferFunctionModel systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-omtvq3


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-blx1qv

Using improper transfer functions:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-bunng0

Connect two StateSpaceModel systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-8062pm


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-jsvinl

Using descriptor state-space models:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-ddom91

Input linear AffineStateSpaceModel systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-wymneu

General nonlinear NonlinearStateSpaceModel systems:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-lj0qwy

Connecting a transfer function and state-space model will give a state-space model:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-s27jj


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-bxf1xe

Connecting a standard linear system and an input linear system will give an affine model:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-ojg65x


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-b2n1y9

Connecting standard linear or affine system with a nonlinear system gives a nonlinear model:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-dzd7s


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-1v79d

Generalizations & Extensions (2)Generalized and extended use cases
Applications (5)Sample problems that can be solved with this function
Obtain the closed-loop transfer function of a discrete-time system with an integral controller and feedback sensor:


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-yapwf9

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-r2mxxw


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-io76ja

A motor-load servo system with position and velocity feedback:


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-rzd4yi
With only position feedback, the system is unstable:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-kkcj1u

The closed-loop system, with rate feedback in the inner loop and position feedback in the outer loop:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-y5fr1k


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-jmtydb

Use SystemsModelFeedbackConnect in multi-loop reduction:


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-dl7fqn

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-gw90bs

Compute the complementary sensitivity function from the loop transfer function:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-z0xpqo

A crankshaft receives a delayed input signal from the engine controller:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-kjh71h

Including a simple controller shows the delay is internal to the closed-loop system:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-h38gcs

Properties & Relations (3)Properties of the function, and connections to other functions
The resulting system has the inputs and outputs of the first system:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-bhv5ob

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-be6ds8

SystemsModelFeedbackConnect is a special case of SystemsConnectionsModel:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-m5dy8e

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-qsi6qw


https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-uky7hy

Connect two transfer functions tfm1 and tfm2:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-vw1kd6

This is equivalent to (IdentityMatrix[n]+tfm1.tfm2)-1.tfm1:

https://wolfram.com/xid/0d2mvu1rmdtqdy0ojeox52-qg38u1

Wolfram Research (2010), SystemsModelFeedbackConnect, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html (updated 2014).
Text
Wolfram Research (2010), SystemsModelFeedbackConnect, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html (updated 2014).
Wolfram Research (2010), SystemsModelFeedbackConnect, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html (updated 2014).
CMS
Wolfram Language. 2010. "SystemsModelFeedbackConnect." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html.
Wolfram Language. 2010. "SystemsModelFeedbackConnect." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html.
APA
Wolfram Language. (2010). SystemsModelFeedbackConnect. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html
Wolfram Language. (2010). SystemsModelFeedbackConnect. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html
BibTeX
@misc{reference.wolfram_2025_systemsmodelfeedbackconnect, author="Wolfram Research", title="{SystemsModelFeedbackConnect}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_systemsmodelfeedbackconnect, organization={Wolfram Research}, title={SystemsModelFeedbackConnect}, year={2014}, url={https://reference.wolfram.com/language/ref/SystemsModelFeedbackConnect.html}, note=[Accessed: 29-March-2025
]}