"NeuralNetwork" (Machine Learning Method)
[Experimental]
Details & Suboptions
- A neural network consists of stacked layers, each performing a simple computation. Information is processed layer by layer from the input layer to the output layer. The neural network is trained to minimize a loss function on the training set using gradient descent.
- The following options can be given:
-
MaxTrainingRounds Automatic maximum number of iterations over the dataset "NetworkDepth" Automatic the depth of the network - The option "NetworkDepth" controls the capacity of the network. A deeper network will be able to fit more complex patterns but will be more prone to overfitting.
- The option MaxTrainingRounds can be used to speed up the training but also as a regularization parameter: setting a lower value can prevent overfitting.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Train a classifier function on labeled examples:
In[1]:=1

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-iexj8n
Out[1]=1

Obtain information about the classifier:
In[2]:=2

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-bzw8uc
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-g4ebwa
Out[3]=3

Generate some data and visualize it:
In[1]:=1

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-ef76x2
Out[1]=1

Train a predictor function on it:
In[2]:=2

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-fj7crm
Out[2]=2

Compare the data with the predicted values and look at the standard deviation:
In[3]:=3

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-bcq515
Out[3]=3

Options (2)Common values & functionality for each option
MaxTrainingRounds (1)
Generate a training set and visualize it:
In[1]:=1

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-rz6f9f
Out[1]=1

Train two predictors using different MaxTrainingRounds and compare their performances on the training set:
In[2]:=2

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-mz0by0
In[3]:=3

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-6mqt1k
Out[3]=3

"NetworkDepth" (1)
Use the "NetworkDepth" suboption to specify the number of units in the neural network:
In[1]:=1

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-tl156l
Out[1]=1

Train a second PredictorFunction by changing the "NetworkDepth":
In[2]:=2

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-xzyqce
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0cbeghptcwbmi3e-yjyd8a
Out[3]=3
