ArcCos
✖
ArcCos
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- All results are given in radians.
- For real
between
and
, the results are always in the range
to
.
- For certain special arguments, ArcCos automatically evaluates to exact values.
- ArcCos can be evaluated to arbitrary numerical precision.
- ArcCos automatically threads over lists.
- ArcCos[z] has branch cut discontinuities in the complex
plane running from
to
and
to
.
- ArcCos can be used with Interval and CenteredInterval objects. »
Background & Context
- ArcCos is the inverse cosine function. For a real number
, ArcCos[x] represents the radian angle measure
such that
.
- ArcCos automatically threads over lists. For certain special arguments, ArcCos automatically evaluates to exact values. When given exact numeric expressions as arguments, ArcCos may be evaluated to arbitrary numeric precision. Operations useful for manipulation of symbolic expressions involving ArcCos include FunctionExpand, TrigToExp, TrigExpand, Simplify, and FullSimplify.
- ArcCos is defined for complex argument
via
. ArcCos[z] has branch cut discontinuities in the complex
plane.
- Related mathematical functions include Cos, ArcSin, and ArcCosh.
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0e7ph9ly-u0d

Divide by Degree to get results in degrees:

https://wolfram.com/xid/0e7ph9ly-qw7

Plot over a subset of the reals:

https://wolfram.com/xid/0e7ph9ly-yz6

Plot over a subset of the complexes:

https://wolfram.com/xid/0e7ph9ly-kiedlx


https://wolfram.com/xid/0e7ph9ly-bq1

Asymptotic expansion at Infinity:

https://wolfram.com/xid/0e7ph9ly-klydni

Asymptotic expansion at a singular point:

https://wolfram.com/xid/0e7ph9ly-k12ao4

Scope (41)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0e7ph9ly-pbj


https://wolfram.com/xid/0e7ph9ly-h5l


https://wolfram.com/xid/0e7ph9ly-xkb

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0e7ph9ly-qkm

Evaluate for complex arguments:

https://wolfram.com/xid/0e7ph9ly-cj0

Evaluate ArcCos efficiently at high precision:

https://wolfram.com/xid/0e7ph9ly-di5gcr


https://wolfram.com/xid/0e7ph9ly-bq2c6r

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0e7ph9ly-c0rerv


https://wolfram.com/xid/0e7ph9ly-lmyeh7


https://wolfram.com/xid/0e7ph9ly-pirpwb

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0e7ph9ly-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0e7ph9ly-thgd2

Or compute the matrix ArcCos function using MatrixFunction:

https://wolfram.com/xid/0e7ph9ly-o5jpo

Specific Values (4)
Values of ArcCos at fixed points:

https://wolfram.com/xid/0e7ph9ly-nww7l


https://wolfram.com/xid/0e7ph9ly-bdij6w


https://wolfram.com/xid/0e7ph9ly-drqkdo

Zero of ArcCos:

https://wolfram.com/xid/0e7ph9ly-cw39qs

Find the value of satisfying equation
:

https://wolfram.com/xid/0e7ph9ly-f2hrld

https://wolfram.com/xid/0e7ph9ly-op0v0e


https://wolfram.com/xid/0e7ph9ly-yei1qb


https://wolfram.com/xid/0e7ph9ly-d6prj

Visualization (3)
Plot the ArcCos function:

https://wolfram.com/xid/0e7ph9ly-ecj8m7


https://wolfram.com/xid/0e7ph9ly-bo5grg


https://wolfram.com/xid/0e7ph9ly-d82jgn


https://wolfram.com/xid/0e7ph9ly-epb4bn

Function Properties (10)
ArcCos is defined for all real values from the interval :

https://wolfram.com/xid/0e7ph9ly-cl7ele

Complex domain is the whole plane:

https://wolfram.com/xid/0e7ph9ly-de3irc

ArcCos achieves all real values from the interval :

https://wolfram.com/xid/0e7ph9ly-evf2yr

Function range for arguments from the complex domain:

https://wolfram.com/xid/0e7ph9ly-fphbrc

ArcCos is not an analytic function:

https://wolfram.com/xid/0e7ph9ly-h5x4l2


https://wolfram.com/xid/0e7ph9ly-e434t9

ArcCos is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0e7ph9ly-g6kynf

It is monotonic over its real domain:

https://wolfram.com/xid/0e7ph9ly-nlz7s

ArcCos is injective:

https://wolfram.com/xid/0e7ph9ly-gi38d7


https://wolfram.com/xid/0e7ph9ly-ctca0g

ArcCos is not surjective:

https://wolfram.com/xid/0e7ph9ly-hkqec4


https://wolfram.com/xid/0e7ph9ly-hdm869

ArcCos is non-negative over its real domain:

https://wolfram.com/xid/0e7ph9ly-84dui

ArcCos has both singularity and discontinuity in (-∞,-1] and [1,∞):

https://wolfram.com/xid/0e7ph9ly-mdtl3h


https://wolfram.com/xid/0e7ph9ly-mn5jws

ArcCos is neither convex nor concave:

https://wolfram.com/xid/0e7ph9ly-kdss3

TraditionalForm formatting:

https://wolfram.com/xid/0e7ph9ly-3qsfn

Differentiation (3)

https://wolfram.com/xid/0e7ph9ly-mmas49


https://wolfram.com/xid/0e7ph9ly-nfbe0l


https://wolfram.com/xid/0e7ph9ly-fxwmfc


https://wolfram.com/xid/0e7ph9ly-odmgl1

Integration (3)
Indefinite integral of ArcCos:

https://wolfram.com/xid/0e7ph9ly-bponid

Definite integral of ArcCos over the entire real domain:

https://wolfram.com/xid/0e7ph9ly-b9jw7l


https://wolfram.com/xid/0e7ph9ly-fbqp9h


https://wolfram.com/xid/0e7ph9ly-pe0f3

Series Expansions (4)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0e7ph9ly-ewr1h8

Plot the first three approximations for ArcCos around :

https://wolfram.com/xid/0e7ph9ly-binhar

General term in the series expansion of ArcCos:

https://wolfram.com/xid/0e7ph9ly-hx3l7

Find the series expansion at branch points and branch cuts:

https://wolfram.com/xid/0e7ph9ly-eib4fg


https://wolfram.com/xid/0e7ph9ly-zm631

ArcCos can be applied to power series:

https://wolfram.com/xid/0e7ph9ly-fbjcan

Function Identities and Simplifications (3)
Simplify expressions involving ArcCos:

https://wolfram.com/xid/0e7ph9ly-gji1fc

Use TrigToExp to express through logarithms and square roots:

https://wolfram.com/xid/0e7ph9ly-nsm


https://wolfram.com/xid/0e7ph9ly-bqfsv5

Expand assuming real variables and
:

https://wolfram.com/xid/0e7ph9ly-z2g1m

Function Representations (5)
Represent using ArcSec:

https://wolfram.com/xid/0e7ph9ly-bujw03

Representation through inverse Jacobi functions:

https://wolfram.com/xid/0e7ph9ly-m9whnz


https://wolfram.com/xid/0e7ph9ly-i0p6v1

Represent using Hypergeometric2F1:

https://wolfram.com/xid/0e7ph9ly-30gtga

Representation in terms of MeijerG:

https://wolfram.com/xid/0e7ph9ly-okel2r

ArcCos can be represented as a DifferentialRoot:

https://wolfram.com/xid/0e7ph9ly-bgjnbg

Applications (5)Sample problems that can be solved with this function
Plot the real and imaginary part of ArcCos:

https://wolfram.com/xid/0e7ph9ly-wnb

Plot the Riemann surface of ArcCos:

https://wolfram.com/xid/0e7ph9ly-moo

Find the angle between two vectors:

https://wolfram.com/xid/0e7ph9ly-whr


https://wolfram.com/xid/0e7ph9ly-ban59i

Solve a differential equation:

https://wolfram.com/xid/0e7ph9ly-egz7aw

3D version of a phyllotaxis pattern:

https://wolfram.com/xid/0e7ph9ly-z28l1b

Properties & Relations (9)Properties of the function, and connections to other functions
Compose with the inverse function:

https://wolfram.com/xid/0e7ph9ly-vkl

Use PowerExpand to disregard multivaluedness of the ArcCos:

https://wolfram.com/xid/0e7ph9ly-3u

Alternatively, evaluate under additional assumptions:

https://wolfram.com/xid/0e7ph9ly-gywjjy

Use TrigToExp to express ArcCos through logarithms and square roots:

https://wolfram.com/xid/0e7ph9ly-v7c

This shows the branch cuts of the ArcCos function:

https://wolfram.com/xid/0e7ph9ly-sg7

ArcCos gives the angle in radians, while ArcCosDegrees gives the same angle in degrees:

https://wolfram.com/xid/0e7ph9ly-0u4ktt


https://wolfram.com/xid/0e7ph9ly-8h1c0s

Expand assuming real variables:

https://wolfram.com/xid/0e7ph9ly-se6

Solve an inverse trigonometric equation:

https://wolfram.com/xid/0e7ph9ly-mzm


https://wolfram.com/xid/0e7ph9ly-py7


https://wolfram.com/xid/0e7ph9ly-l11


https://wolfram.com/xid/0e7ph9ly-lvl

ArcCos is automatically returned as a special case for various mathematical functions:

https://wolfram.com/xid/0e7ph9ly-lf0

Possible Issues (4)Common pitfalls and unexpected behavior

https://wolfram.com/xid/0e7ph9ly-gla


https://wolfram.com/xid/0e7ph9ly-s47

On branch cuts, machine-precision inputs can give numerically wrong answers:

https://wolfram.com/xid/0e7ph9ly-k2i


https://wolfram.com/xid/0e7ph9ly-oek

The precision of the output can be much less than the precision of the input:

https://wolfram.com/xid/0e7ph9ly-t4c

In traditional form, parentheses are needed around the argument:

https://wolfram.com/xid/0e7ph9ly-ppr


https://wolfram.com/xid/0e7ph9ly-eqj

Wolfram Research (1988), ArcCos, Wolfram Language function, https://reference.wolfram.com/language/ref/ArcCos.html (updated 2021).
Text
Wolfram Research (1988), ArcCos, Wolfram Language function, https://reference.wolfram.com/language/ref/ArcCos.html (updated 2021).
Wolfram Research (1988), ArcCos, Wolfram Language function, https://reference.wolfram.com/language/ref/ArcCos.html (updated 2021).
CMS
Wolfram Language. 1988. "ArcCos." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/ArcCos.html.
Wolfram Language. 1988. "ArcCos." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/ArcCos.html.
APA
Wolfram Language. (1988). ArcCos. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArcCos.html
Wolfram Language. (1988). ArcCos. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArcCos.html
BibTeX
@misc{reference.wolfram_2025_arccos, author="Wolfram Research", title="{ArcCos}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/ArcCos.html}", note=[Accessed: 12-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_arccos, organization={Wolfram Research}, title={ArcCos}, year={2021}, url={https://reference.wolfram.com/language/ref/ArcCos.html}, note=[Accessed: 12-May-2025
]}