BlomqvistBeta
✖
BlomqvistBeta
gives Blomqvist's medial correlation coefficient β for the vectors v1 and v2.
gives Blomqvist's medial correlation coefficient β for the matrices m1 and m2.
gives the medial correlation coefficient matrix for the multivariate symbolic distribution dist.
gives the (i,j) medial correlation coefficient for the multivariate symbolic distribution dist.
Details

- BlomqvistBeta[v1,v2] gives Blomqvist's medial correlation coefficient β between v1 and v2.
- Blomqvist's β between vectors x and y is given by Correlation[Sign[x-μx],Sign[y-μy]], where μx and μy are the medians of x and y, respectively.
- The arguments v1 and v2 can be any real‐valued vectors of equal length.
- For a matrix m with
columns BlomqvistBeta[m] is a
×
matrix of the β's between columns of m.
- For an
×
matrix m1 and an
×
matrix m2 BlomqvistBeta[m1,m2] is a
×
matrix of the β's between columns of m1 and columns of m2.
- BlomqvistBeta[dist,i,j] is Probability[(x-μx)(y-μy)>0,{x,y}disti,j]-Probability[(x-μx)(y-μy)<0,{x,y}disti,j] where disti,j is the
marginal of dist.
- BlomqvistBeta is not well defined for discrete distributions or in the presence of ties.
- BlomqvistBeta[dist] gives a matrix β where the
entry is given by BlomqvistBeta[dist,i,j].
Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Blomqvist's β for two vectors:

https://wolfram.com/xid/0hyyfta78qi50wq7-gugb6d

https://wolfram.com/xid/0hyyfta78qi50wq7-fulot0


https://wolfram.com/xid/0hyyfta78qi50wq7-9un6t

https://wolfram.com/xid/0hyyfta78qi50wq7-hz9gv1

Blomqvist's β for two matrices:

https://wolfram.com/xid/0hyyfta78qi50wq7-bv14aj

https://wolfram.com/xid/0hyyfta78qi50wq7-ce2wv

https://wolfram.com/xid/0hyyfta78qi50wq7-i51zwj

Compute Blomqvist's β matrix for a bivariate distribution:

https://wolfram.com/xid/0hyyfta78qi50wq7-f7dh9d

https://wolfram.com/xid/0hyyfta78qi50wq7-mzz2lg


https://wolfram.com/xid/0hyyfta78qi50wq7-nwpxl1

Scope (7)Survey of the scope of standard use cases
Data (4)
Exact input yields exact output:

https://wolfram.com/xid/0hyyfta78qi50wq7-eta06h

Approximate input yields approximate output:

https://wolfram.com/xid/0hyyfta78qi50wq7-bbwiw5


https://wolfram.com/xid/0hyyfta78qi50wq7-bamv3h


https://wolfram.com/xid/0hyyfta78qi50wq7-kt50m4

SparseArray data can be used:

https://wolfram.com/xid/0hyyfta78qi50wq7-cz9dkm

Distributions and Processes (3)
Blomqvist's β matrix for a continuous multivariate distribution:

https://wolfram.com/xid/0hyyfta78qi50wq7-fnv00k


https://wolfram.com/xid/0hyyfta78qi50wq7-tekwa

Blomqvist's β matrix for derived distributions:

https://wolfram.com/xid/0hyyfta78qi50wq7-c3a9y


https://wolfram.com/xid/0hyyfta78qi50wq7-cy97of

https://wolfram.com/xid/0hyyfta78qi50wq7-etkwz


https://wolfram.com/xid/0hyyfta78qi50wq7-hxjash

https://wolfram.com/xid/0hyyfta78qi50wq7-gm1a47


https://wolfram.com/xid/0hyyfta78qi50wq7-edj4ah

Blomqvist's β matrix for a random process at times and
:

https://wolfram.com/xid/0hyyfta78qi50wq7-hv1ygl

Applications (3)Sample problems that can be solved with this function
Blomqvist's β is typically used to detect linear dependence between two vectors:

https://wolfram.com/xid/0hyyfta78qi50wq7-ieb3ez
The absolute magnitude of β tends to 1 given strong linear dependence:

https://wolfram.com/xid/0hyyfta78qi50wq7-eovfow

The value tends to 0 for linearly independent vectors:

https://wolfram.com/xid/0hyyfta78qi50wq7-csoxzv

Blomqvist's β can be used to measure linear association:

https://wolfram.com/xid/0hyyfta78qi50wq7-g4uich

https://wolfram.com/xid/0hyyfta78qi50wq7-f44cf5

Blomqvist's β only detects monotonic dependence structures:

https://wolfram.com/xid/0hyyfta78qi50wq7-7nvfr

https://wolfram.com/xid/0hyyfta78qi50wq7-nazb6e

https://wolfram.com/xid/0hyyfta78qi50wq7-j9qi3

https://wolfram.com/xid/0hyyfta78qi50wq7-gtfa0z

HoeffdingD can be used for a variety of other dependence structures:

https://wolfram.com/xid/0hyyfta78qi50wq7-jor85u

Properties & Relations (7)Properties of the function, and connections to other functions
Blomqvist's β ranges from to
for high negative and high positive association, respectively:

https://wolfram.com/xid/0hyyfta78qi50wq7-cishqp

https://wolfram.com/xid/0hyyfta78qi50wq7-cp90d4


https://wolfram.com/xid/0hyyfta78qi50wq7-mp4oro

Blomqvist's β matrix is symmetric:

https://wolfram.com/xid/0hyyfta78qi50wq7-31bc2

https://wolfram.com/xid/0hyyfta78qi50wq7-mmzf9d

The diagonal elements of Blomqvist's β matrix are 1:

https://wolfram.com/xid/0hyyfta78qi50wq7-o1vsb7

https://wolfram.com/xid/0hyyfta78qi50wq7-h7qlge

Blomqvist's for even sample sizes:

https://wolfram.com/xid/0hyyfta78qi50wq7-iwlpup

https://wolfram.com/xid/0hyyfta78qi50wq7-qubvni


https://wolfram.com/xid/0hyyfta78qi50wq7-dziua2

https://wolfram.com/xid/0hyyfta78qi50wq7-gn688l

Count the number of points in each quadrant:

https://wolfram.com/xid/0hyyfta78qi50wq7-3rmyw

https://wolfram.com/xid/0hyyfta78qi50wq7-hkz0p3


https://wolfram.com/xid/0hyyfta78qi50wq7-coibfl


https://wolfram.com/xid/0hyyfta78qi50wq7-fflt44


https://wolfram.com/xid/0hyyfta78qi50wq7-cimejn

Blomqvist's β will yield or
if there is perfect monotonic association:

https://wolfram.com/xid/0hyyfta78qi50wq7-by9rj0

https://wolfram.com/xid/0hyyfta78qi50wq7-gyt4k


https://wolfram.com/xid/0hyyfta78qi50wq7-gdt5ie


https://wolfram.com/xid/0hyyfta78qi50wq7-ckj7he

This is in contrast to Correlation, which measures the degree of linear association:

https://wolfram.com/xid/0hyyfta78qi50wq7-7kt18


https://wolfram.com/xid/0hyyfta78qi50wq7-m7fz8x

BlomqvistBetaTest can be used to test the value of β:

https://wolfram.com/xid/0hyyfta78qi50wq7-p2yi95

https://wolfram.com/xid/0hyyfta78qi50wq7-cdzlve


https://wolfram.com/xid/0hyyfta78qi50wq7-cye8gw

IndependenceTest can be used to automatically select an appropriate test:

https://wolfram.com/xid/0hyyfta78qi50wq7-gpn0r

Blomqvist's β for a bivariate distribution:

https://wolfram.com/xid/0hyyfta78qi50wq7-bfewud

https://wolfram.com/xid/0hyyfta78qi50wq7-ewdode


https://wolfram.com/xid/0hyyfta78qi50wq7-gd8n5r


https://wolfram.com/xid/0hyyfta78qi50wq7-grblhu


https://wolfram.com/xid/0hyyfta78qi50wq7-fy88em

https://wolfram.com/xid/0hyyfta78qi50wq7-n4qnp

Wolfram Research (2012), BlomqvistBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/BlomqvistBeta.html.
Text
Wolfram Research (2012), BlomqvistBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/BlomqvistBeta.html.
Wolfram Research (2012), BlomqvistBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/BlomqvistBeta.html.
CMS
Wolfram Language. 2012. "BlomqvistBeta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BlomqvistBeta.html.
Wolfram Language. 2012. "BlomqvistBeta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BlomqvistBeta.html.
APA
Wolfram Language. (2012). BlomqvistBeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BlomqvistBeta.html
Wolfram Language. (2012). BlomqvistBeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BlomqvistBeta.html
BibTeX
@misc{reference.wolfram_2025_blomqvistbeta, author="Wolfram Research", title="{BlomqvistBeta}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/BlomqvistBeta.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_blomqvistbeta, organization={Wolfram Research}, title={BlomqvistBeta}, year={2012}, url={https://reference.wolfram.com/language/ref/BlomqvistBeta.html}, note=[Accessed: 29-March-2025
]}