Sign
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For nonzero complex numbers z, Sign[z] is defined as z/Abs[z].
- Sign tries various transformations in trying to determine the sign of symbolic expressions.
- For exact numeric quantities, Sign internally uses numerical approximations to establish its result. This process can be affected by the setting of the global variable $MaxExtraPrecision.
- Sign automatically threads over lists. »
- Sign can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0dehxk-hg78e8


https://wolfram.com/xid/0dehxk-p4lt5


https://wolfram.com/xid/0dehxk-bc15cz

Plot over a subset of the reals:

https://wolfram.com/xid/0dehxk-frdvdr

Plot over a subset of the complexes:

https://wolfram.com/xid/0dehxk-kiedlx

Scope (32)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0dehxk-cksbl4


https://wolfram.com/xid/0dehxk-hfml09


https://wolfram.com/xid/0dehxk-orsjwl

For real inputs, the result is exact:

https://wolfram.com/xid/0dehxk-202p7j

For complex inputs, the precision of the output tracks the precision of the input:

https://wolfram.com/xid/0dehxk-6i01jt

Evaluate efficiently at high precision:

https://wolfram.com/xid/0dehxk-di5gcr


https://wolfram.com/xid/0dehxk-bq2c6r

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0dehxk-thgd2

Or compute the matrix Sign function using MatrixFunction:

https://wolfram.com/xid/0dehxk-o5jpo

Sign can be used with Interval and CenteredInterval objects:

https://wolfram.com/xid/0dehxk-77pp6


https://wolfram.com/xid/0dehxk-c4puj1

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0dehxk-cw18bq

Specific Values (5)
Values of Sign at fixed points:

https://wolfram.com/xid/0dehxk-nww7l


https://wolfram.com/xid/0dehxk-bmqd0y


https://wolfram.com/xid/0dehxk-ukawnk


https://wolfram.com/xid/0dehxk-4qp834


https://wolfram.com/xid/0dehxk-s2xf86


https://wolfram.com/xid/0dehxk-ia2x93

Find a value of for which the
:

https://wolfram.com/xid/0dehxk-f2hrld


https://wolfram.com/xid/0dehxk-e46gds

Visualization (4)

https://wolfram.com/xid/0dehxk-ecj8m7

Plot the real and imaginary parts of the function:

https://wolfram.com/xid/0dehxk-eq46t4

Visualize Sign in three dimensions:

https://wolfram.com/xid/0dehxk-60kxwm

Plot the real part of the function:

https://wolfram.com/xid/0dehxk-kgd8nu

Plot the imaginary part of the function:

https://wolfram.com/xid/0dehxk-gqdt8c

Function Properties (12)
Sign is defined for all real and complex inputs:

https://wolfram.com/xid/0dehxk-cl7ele


https://wolfram.com/xid/0dehxk-c4ycek

Function range of Sign for real inputs:

https://wolfram.com/xid/0dehxk-evf2yr

The range over the complex plane is the unit circle plus the origin:

https://wolfram.com/xid/0dehxk-l6tcwq

Sign is an odd function:

https://wolfram.com/xid/0dehxk-s5zo8

Sign has mirror symmetry :

https://wolfram.com/xid/0dehxk-otf8jm

Sign is not a differentiable function:

https://wolfram.com/xid/0dehxk-fb9jdx

The difference quotient does not have a limit in the complex plane:

https://wolfram.com/xid/0dehxk-fqx7yy

There is only a limit in certain directions, for example, the real direction:

https://wolfram.com/xid/0dehxk-yvnsee

Use RealSign to obtain this real-differentiable result:

https://wolfram.com/xid/0dehxk-k3sdkc

Sign is not an analytic function:

https://wolfram.com/xid/0dehxk-h5x4l2

It has both singularities and discontinuities:

https://wolfram.com/xid/0dehxk-mdtl3h


https://wolfram.com/xid/0dehxk-mn5jws

Over the complex plane, it is singular everywhere but still discontinuous only at the origin:

https://wolfram.com/xid/0dehxk-c57ktt


https://wolfram.com/xid/0dehxk-l8oyc7

Sign is nonincreasing:

https://wolfram.com/xid/0dehxk-nlz7s

Sign is not injective:

https://wolfram.com/xid/0dehxk-poz8g


https://wolfram.com/xid/0dehxk-ctca0g

Sign is not surjective:

https://wolfram.com/xid/0dehxk-cxk3a6


https://wolfram.com/xid/0dehxk-frlnsr

Sign is neither non-negative nor non-positive:

https://wolfram.com/xid/0dehxk-84dui

Sign is neither convex nor concave:

https://wolfram.com/xid/0dehxk-8kku21

TraditionalForm formatting:

https://wolfram.com/xid/0dehxk-mghy34

Function Identities and Simplifications (5)
Expand assuming real variables x and y:

https://wolfram.com/xid/0dehxk-wunchk

Simplify Sign using appropriate assumptions:

https://wolfram.com/xid/0dehxk-bg5s5j

Express a complex number as a product of Sign and Abs:

https://wolfram.com/xid/0dehxk-terytt


https://wolfram.com/xid/0dehxk-zj3thl


https://wolfram.com/xid/0dehxk-36or8u

Applications (2)Sample problems that can be solved with this function
Plot the real and imaginary parts of Sign over the complex plane:

https://wolfram.com/xid/0dehxk

Define Rademacher functions:

https://wolfram.com/xid/0dehxk
Plot (vertically shifted) Rademacher functions:

https://wolfram.com/xid/0dehxk

Check orthogonality over the unit interval:

https://wolfram.com/xid/0dehxk

Properties & Relations (10)Properties of the function, and connections to other functions
Sign with simple arguments automatically evaluates to simpler form:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

Sign is idempotent:

https://wolfram.com/xid/0dehxk

Use FullSimplify to simplify expressions involving Sign:

https://wolfram.com/xid/0dehxk

Simplify under additional assumptions:

https://wolfram.com/xid/0dehxk

Assume real‐valued variables:

https://wolfram.com/xid/0dehxk

Use Sign as a target function for ComplexExpand:

https://wolfram.com/xid/0dehxk

Use Sign in definite integration:

https://wolfram.com/xid/0dehxk

Integrate along a line in the complex plane, symbolically and numerically:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

For complex values, the indefinite integral is path dependent:

https://wolfram.com/xid/0dehxk

The indefinite integral for real values:

https://wolfram.com/xid/0dehxk

Use in integral transforms:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

Obtain Sign from integrals and limits:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk-g4ug

Convert to Piecewise:

https://wolfram.com/xid/0dehxk

De‐nest:

https://wolfram.com/xid/0dehxk

Possible Issues (5)Common pitfalls and unexpected behavior
Sign is a function of a complex variable and is therefore not differentiable:

https://wolfram.com/xid/0dehxk-ygmemv

As a complex function, it is not possible to write Sign[z] without involving Conjugate[z]:

https://wolfram.com/xid/0dehxk-ff0qfc

In particular, the limit that defines the derivative is direction dependent and therefore does not exist:

https://wolfram.com/xid/0dehxk-2pb7j7


https://wolfram.com/xid/0dehxk-xvhk4r

Use RealSign, which assumes its argument is real, to obtain a differentiable version of Sign:

https://wolfram.com/xid/0dehxk-b0j0sf

For purely real or imaginary approximate arguments, Sign returns exact answers:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

For general complex arguments, Sign tracks the precision of the input:

https://wolfram.com/xid/0dehxk-bjn9y7

Sign can stay unevaluated for numeric arguments:

https://wolfram.com/xid/0dehxk



https://wolfram.com/xid/0dehxk

Machine‐precision numerical evaluation of Sign can give wrong results:

https://wolfram.com/xid/0dehxk



https://wolfram.com/xid/0dehxk

Arbitrary‐precision evaluation gives the correct result:

https://wolfram.com/xid/0dehxk


A larger setting for $MaxExtraPrecision can be needed:

https://wolfram.com/xid/0dehxk

Sign applied to a matrix does not give the matrix sign function:

https://wolfram.com/xid/0dehxk

Neat Examples (3)Surprising or curious use cases
Form repeated convolution integrals starting with a symmetric product of three sign functions:

https://wolfram.com/xid/0dehxk

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

Approximate Sign through a generalized Fourier series:

https://wolfram.com/xid/0dehxk

https://wolfram.com/xid/0dehxk

Calculate rational approximations of Sign:

https://wolfram.com/xid/0dehxk


https://wolfram.com/xid/0dehxk

Wolfram Research (1988), Sign, Wolfram Language function, https://reference.wolfram.com/language/ref/Sign.html (updated 2021).
Text
Wolfram Research (1988), Sign, Wolfram Language function, https://reference.wolfram.com/language/ref/Sign.html (updated 2021).
Wolfram Research (1988), Sign, Wolfram Language function, https://reference.wolfram.com/language/ref/Sign.html (updated 2021).
CMS
Wolfram Language. 1988. "Sign." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Sign.html.
Wolfram Language. 1988. "Sign." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Sign.html.
APA
Wolfram Language. (1988). Sign. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Sign.html
Wolfram Language. (1988). Sign. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Sign.html
BibTeX
@misc{reference.wolfram_2025_sign, author="Wolfram Research", title="{Sign}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/Sign.html}", note=[Accessed: 11-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_sign, organization={Wolfram Research}, title={Sign}, year={2021}, url={https://reference.wolfram.com/language/ref/Sign.html}, note=[Accessed: 11-May-2025
]}