ConvexPolygonQ
✖
ConvexPolygonQ
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Test whether a polygon is convex:

https://wolfram.com/xid/0mk5zln2xpdv-4ub3ke


https://wolfram.com/xid/0mk5zln2xpdv-rkizf2

ConvexPolygonQ gives False for non-convex polygons:

https://wolfram.com/xid/0mk5zln2xpdv-j9sy8x


https://wolfram.com/xid/0mk5zln2xpdv-9bwmtc

Scope (7)Survey of the scope of standard use cases
ConvexPolygonQ works on polygons:

https://wolfram.com/xid/0mk5zln2xpdv-cpw0pk


https://wolfram.com/xid/0mk5zln2xpdv-nc5g0k


https://wolfram.com/xid/0mk5zln2xpdv-3o58n0


https://wolfram.com/xid/0mk5zln2xpdv-ruxc6r


https://wolfram.com/xid/0mk5zln2xpdv-kqhcfa


https://wolfram.com/xid/0mk5zln2xpdv-ho2agf


https://wolfram.com/xid/0mk5zln2xpdv-w46hef


https://wolfram.com/xid/0mk5zln2xpdv-h1pvwe

Polygons with disconnected components:

https://wolfram.com/xid/0mk5zln2xpdv-inu7wu


https://wolfram.com/xid/0mk5zln2xpdv-npcjle


https://wolfram.com/xid/0mk5zln2xpdv-e1thk8

https://wolfram.com/xid/0mk5zln2xpdv-4qfgdy

ConvexPolygonQ works on polygons of geographic entities:

https://wolfram.com/xid/0mk5zln2xpdv-9lptsz

https://wolfram.com/xid/0mk5zln2xpdv-lzdigv

Polygons with GeoPosition:

https://wolfram.com/xid/0mk5zln2xpdv-1lk1dy

https://wolfram.com/xid/0mk5zln2xpdv-8vjhh8

Polygons with GeoPositionXYZ:

https://wolfram.com/xid/0mk5zln2xpdv-4dy58p

https://wolfram.com/xid/0mk5zln2xpdv-pzmsx0

Polygons with GeoPositionENU:

https://wolfram.com/xid/0mk5zln2xpdv-sz3fv8

https://wolfram.com/xid/0mk5zln2xpdv-pjpdg1

ConvexPolygonQ works on polygons with GeoGridPosition:

https://wolfram.com/xid/0mk5zln2xpdv-ipsiqu

https://wolfram.com/xid/0mk5zln2xpdv-yjciq7

Applications (4)Sample problems that can be solved with this function
Generate random polygons for testing algorithms and verification of time complexity:

https://wolfram.com/xid/0mk5zln2xpdv-dko19g

https://wolfram.com/xid/0mk5zln2xpdv-i6opfi

https://wolfram.com/xid/0mk5zln2xpdv-34otit

Time complexity for algorithms for convex polygons:

https://wolfram.com/xid/0mk5zln2xpdv-hqm8h7

https://wolfram.com/xid/0mk5zln2xpdv-oztoqj

Test whether a polygon is concave:

https://wolfram.com/xid/0mk5zln2xpdv-9imvre

https://wolfram.com/xid/0mk5zln2xpdv-vigl3p


https://wolfram.com/xid/0mk5zln2xpdv-2tz0wv

Attempt to test whether a geometric region is convex:

https://wolfram.com/xid/0mk5zln2xpdv-x8mfux

https://wolfram.com/xid/0mk5zln2xpdv-4yjj0v


https://wolfram.com/xid/0mk5zln2xpdv-2wenm

Polygon classification using machine learning. Train a classifier function on polygon examples:

https://wolfram.com/xid/0mk5zln2xpdv-qvoctg

https://wolfram.com/xid/0mk5zln2xpdv-h9jsbn

Use the classifier function to classify new polygons:

https://wolfram.com/xid/0mk5zln2xpdv-qw0snw

https://wolfram.com/xid/0mk5zln2xpdv-1tu3rl

https://wolfram.com/xid/0mk5zln2xpdv-c06mx5


https://wolfram.com/xid/0mk5zln2xpdv-wuyym3


https://wolfram.com/xid/0mk5zln2xpdv-7l1pq5

https://wolfram.com/xid/0mk5zln2xpdv-h9giye


https://wolfram.com/xid/0mk5zln2xpdv-rbiptp

https://wolfram.com/xid/0mk5zln2xpdv-b7ktjr

Properties & Relations (6)Properties of the function, and connections to other functions

https://wolfram.com/xid/0mk5zln2xpdv-r62rjj


https://wolfram.com/xid/0mk5zln2xpdv-8pejw4


https://wolfram.com/xid/0mk5zln2xpdv-81m2lg

The OuterPolygon of a convex polygon is convex:

https://wolfram.com/xid/0mk5zln2xpdv-0l86ju


https://wolfram.com/xid/0mk5zln2xpdv-w41r5t


https://wolfram.com/xid/0mk5zln2xpdv-5rnwtj

Convex polygons do not have inner polygons:

https://wolfram.com/xid/0mk5zln2xpdv-gc2sj2

A convex polygon has all interior vertex angles less than :

https://wolfram.com/xid/0mk5zln2xpdv-jweblq


https://wolfram.com/xid/0mk5zln2xpdv-ca23pz

Use PolygonDecomposition to decompose a polygon into convex polygons:

https://wolfram.com/xid/0mk5zln2xpdv-6wznbi

https://wolfram.com/xid/0mk5zln2xpdv-o9aruz


https://wolfram.com/xid/0mk5zln2xpdv-ulrhue

Use RandomPolygon to generate a convex polygon:

https://wolfram.com/xid/0mk5zln2xpdv-lls03k


https://wolfram.com/xid/0mk5zln2xpdv-gocq6x

The convex polygon is the convex hull of its edges:

https://wolfram.com/xid/0mk5zln2xpdv-yvs0yc

https://wolfram.com/xid/0mk5zln2xpdv-xkspp2

Possible Issues (1)Common pitfalls and unexpected behavior
For a nonconstant polygon, ConvexPolygonQ returns False:

https://wolfram.com/xid/0mk5zln2xpdv-dft85s

https://wolfram.com/xid/0mk5zln2xpdv-d4damb


https://wolfram.com/xid/0mk5zln2xpdv-2varjo

Wolfram Research (2019), ConvexPolygonQ, Wolfram Language function, https://reference.wolfram.com/language/ref/ConvexPolygonQ.html.
Text
Wolfram Research (2019), ConvexPolygonQ, Wolfram Language function, https://reference.wolfram.com/language/ref/ConvexPolygonQ.html.
Wolfram Research (2019), ConvexPolygonQ, Wolfram Language function, https://reference.wolfram.com/language/ref/ConvexPolygonQ.html.
CMS
Wolfram Language. 2019. "ConvexPolygonQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ConvexPolygonQ.html.
Wolfram Language. 2019. "ConvexPolygonQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ConvexPolygonQ.html.
APA
Wolfram Language. (2019). ConvexPolygonQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ConvexPolygonQ.html
Wolfram Language. (2019). ConvexPolygonQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ConvexPolygonQ.html
BibTeX
@misc{reference.wolfram_2025_convexpolygonq, author="Wolfram Research", title="{ConvexPolygonQ}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/ConvexPolygonQ.html}", note=[Accessed: 23-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_convexpolygonq, organization={Wolfram Research}, title={ConvexPolygonQ}, year={2019}, url={https://reference.wolfram.com/language/ref/ConvexPolygonQ.html}, note=[Accessed: 23-April-2025
]}