PolygonDecomposition
Details

- PolygonDecomposition is also known as tessellation, triangulation or partition.
- PolygonDecomposition is typically used to represent a polygon as a union of simpler objects for which a problem may be easier to solve.
- PolygonDecomposition gives a Polygon consisting of a union of polygons with disjoint interiors, but boundaries may overlap.
- Possible "type" specifications:
-
"Simple" simple polygons "Convex" convex polygons "Triangle" triangles
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Decompose a Polygon into a union of simpler polygons:

https://wolfram.com/xid/05fkb1psa6-9omr90

https://wolfram.com/xid/05fkb1psa6-o0vyb5


https://wolfram.com/xid/05fkb1psa6-7itru4


https://wolfram.com/xid/05fkb1psa6-ds3m2t

Scope (15)Survey of the scope of standard use cases
Basic Uses (5)

https://wolfram.com/xid/05fkb1psa6-6wznbi

https://wolfram.com/xid/05fkb1psa6-6z1bi5


https://wolfram.com/xid/05fkb1psa6-ulrhue

Decompose into polygons of a specific type:

https://wolfram.com/xid/05fkb1psa6-3k8yn3

https://wolfram.com/xid/05fkb1psa6-dds1hd

PolygonDecomposition works on polygonal regions:

https://wolfram.com/xid/05fkb1psa6-g0p7qo


https://wolfram.com/xid/05fkb1psa6-3w0ssi

PolygonDecomposition works on polygons with GeoPosition:

https://wolfram.com/xid/05fkb1psa6-1lk1dy

https://wolfram.com/xid/05fkb1psa6-8vjhh8

Polygons with GeoGridPosition:

https://wolfram.com/xid/05fkb1psa6-ipsiqu

https://wolfram.com/xid/05fkb1psa6-yjciq7

Convex Decomposition (4)

https://wolfram.com/xid/05fkb1psa6-iq6flg

https://wolfram.com/xid/05fkb1psa6-ia24lv


https://wolfram.com/xid/05fkb1psa6-u2y9kk


https://wolfram.com/xid/05fkb1psa6-04wfh0

https://wolfram.com/xid/05fkb1psa6-md0c4x


https://wolfram.com/xid/05fkb1psa6-iqr3zp


https://wolfram.com/xid/05fkb1psa6-emp4sz

https://wolfram.com/xid/05fkb1psa6-qc66yp


https://wolfram.com/xid/05fkb1psa6-fyu5od


https://wolfram.com/xid/05fkb1psa6-53u2au

https://wolfram.com/xid/05fkb1psa6-70ss58

Simple Decomposition (2)

https://wolfram.com/xid/05fkb1psa6-7nb6k

https://wolfram.com/xid/05fkb1psa6-jxyd8i


https://wolfram.com/xid/05fkb1psa6-72i86x


https://wolfram.com/xid/05fkb1psa6-up9adn

https://wolfram.com/xid/05fkb1psa6-x8z353

Triangle Decomposition (4)

https://wolfram.com/xid/05fkb1psa6-rvrmdp

https://wolfram.com/xid/05fkb1psa6-rog565


https://wolfram.com/xid/05fkb1psa6-kzhlzr


https://wolfram.com/xid/05fkb1psa6-m6nwy8

https://wolfram.com/xid/05fkb1psa6-x8oh6x


https://wolfram.com/xid/05fkb1psa6-qqytze


https://wolfram.com/xid/05fkb1psa6-2l31ye

https://wolfram.com/xid/05fkb1psa6-65nqnv


https://wolfram.com/xid/05fkb1psa6-8vyfm7


https://wolfram.com/xid/05fkb1psa6-ue4gfj

https://wolfram.com/xid/05fkb1psa6-hq8cad

Properties & Relations (2)Properties of the function, and connections to other functions
Use SimplePolygonQ to test whether a polygon is simple:

https://wolfram.com/xid/05fkb1psa6-lu58fd

https://wolfram.com/xid/05fkb1psa6-kxypgy

Decompose into simple polygons:

https://wolfram.com/xid/05fkb1psa6-2g1m6z

Use ConvexPolygonQ to test whether a polygon is convex:

https://wolfram.com/xid/05fkb1psa6-iff2kl

https://wolfram.com/xid/05fkb1psa6-ykxe28

Decompose into convex polygons:

https://wolfram.com/xid/05fkb1psa6-4j0q64

Wolfram Research (2019), PolygonDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/PolygonDecomposition.html.
Text
Wolfram Research (2019), PolygonDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/PolygonDecomposition.html.
Wolfram Research (2019), PolygonDecomposition, Wolfram Language function, https://reference.wolfram.com/language/ref/PolygonDecomposition.html.
CMS
Wolfram Language. 2019. "PolygonDecomposition." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PolygonDecomposition.html.
Wolfram Language. 2019. "PolygonDecomposition." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PolygonDecomposition.html.
APA
Wolfram Language. (2019). PolygonDecomposition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolygonDecomposition.html
Wolfram Language. (2019). PolygonDecomposition. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolygonDecomposition.html
BibTeX
@misc{reference.wolfram_2025_polygondecomposition, author="Wolfram Research", title="{PolygonDecomposition}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/PolygonDecomposition.html}", note=[Accessed: 19-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_polygondecomposition, organization={Wolfram Research}, title={PolygonDecomposition}, year={2019}, url={https://reference.wolfram.com/language/ref/PolygonDecomposition.html}, note=[Accessed: 19-June-2025
]}