FoxH
✖
FoxH
is the Fox H-function .
Details


- Mathematical function, suitable for both symbolic and numerical manipulation.
- FoxH generalizes the MeijerG function and is defined by the Mellin–Barnes integral
where
and
are positive real numbers and the integration is along a path
separating the poles of
from the poles of
.
- Three choices are possible for the path
:
a.is a loop beginning at
and ending at
and encircling all the poles of
once in the positive direction.
b.is a loop beginning at
and ending at
and encircling all the poles of
once in the negative direction.
c.is a contour starting at the point
and going to
such that all the poles of
are separated from the poles of
.
- FoxH specializes to MeijerG if
for
and
:
.
- In many special cases, FoxH is automatically converted to other functions.
- FoxH can be evaluated for arbitrary complex parameters.
- FoxH can be evaluated to arbitrary numerical precision.
- FoxH automatically threads over lists. »

Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0lddfq0-y90q8q

Many special functions are special cases of FoxH:

https://wolfram.com/xid/0lddfq0-zpqcb1


https://wolfram.com/xid/0lddfq0-exgo4e

Some cases cannot be easily expressed in terms of MeijerG:

https://wolfram.com/xid/0lddfq0-sgl2d0

Plot the FoxH function:

https://wolfram.com/xid/0lddfq0-et8nxu

Plot over a subset of the complexes:

https://wolfram.com/xid/0lddfq0-i8i5a

Series expansion at the origin:

https://wolfram.com/xid/0lddfq0-eb4j86

Leading asymptotic term at Infinity:

https://wolfram.com/xid/0lddfq0-v7vjm8

Scope (28)Survey of the scope of standard use cases
Numerical Evaluation (7)

https://wolfram.com/xid/0lddfq0-uqurky

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0lddfq0-7pnli

FoxH takes complex number parameters and
:

https://wolfram.com/xid/0lddfq0-73jn14


https://wolfram.com/xid/0lddfq0-kc14fn

FoxH takes complex number arguments:

https://wolfram.com/xid/0lddfq0-5ynw5b

Evaluate FoxH efficiently at high precision:

https://wolfram.com/xid/0lddfq0-ji0ubl

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0lddfq0-thgd2

Or compute the matrix FoxH function using MatrixFunction:

https://wolfram.com/xid/0lddfq0-o5jpo

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0lddfq0-cw18bq

Specific Values (3)

https://wolfram.com/xid/0lddfq0-hoz0j9


https://wolfram.com/xid/0lddfq0-bjvvy9

Evaluate FoxH symbolically:

https://wolfram.com/xid/0lddfq0-c7k6ij


https://wolfram.com/xid/0lddfq0-qb0m5x


https://wolfram.com/xid/0lddfq0-jevg27


https://wolfram.com/xid/0lddfq0-bqgyg7

Visualization (4)
Plot a family of FoxH functions:

https://wolfram.com/xid/0lddfq0-whol1i

ComplexContourPlot of FoxH[{{{},{}},{{{-1,1/2}},{}}, z]:

https://wolfram.com/xid/0lddfq0-fe43yg

https://wolfram.com/xid/0lddfq0-o4ub1v

Use AbsArgPlot and ReImPlot to plot complex values of FoxH over the real numbers:

https://wolfram.com/xid/0lddfq0-338p9b


https://wolfram.com/xid/0lddfq0-3iuf5h

Plot FoxH as a function of parameters and
:

https://wolfram.com/xid/0lddfq0-9m23rp

Function Properties (5)
For simple parameters, FoxH evaluates to simpler functions:

https://wolfram.com/xid/0lddfq0-ih9u38


https://wolfram.com/xid/0lddfq0-ulkkv

FoxH is symmetric in the pairs and
:

https://wolfram.com/xid/0lddfq0-na218x


https://wolfram.com/xid/0lddfq0-1z5gno

FoxH might reduce to a simpler FoxH if some of the pairs are equal:

https://wolfram.com/xid/0lddfq0-z1rxd8


https://wolfram.com/xid/0lddfq0-ko2e8m

FoxH threads elementwise over lists in the last argument:

https://wolfram.com/xid/0lddfq0-qypqlf


https://wolfram.com/xid/0lddfq0-fx57ge

TraditionalForm formatting:

https://wolfram.com/xid/0lddfq0-iys0p4


https://wolfram.com/xid/0lddfq0-qccsli

Differentiation (2)
First derivative with respect to z:

https://wolfram.com/xid/0lddfq0-ktc8zh

https://wolfram.com/xid/0lddfq0-sb6uc7

Higher-order derivative with respect to z:

https://wolfram.com/xid/0lddfq0-z33jv

Formula for the derivative of a specific FoxH with respect to z:

https://wolfram.com/xid/0lddfq0-cb5zgj

Integration (3)
Compute the indefinite integral using Integrate:

https://wolfram.com/xid/0lddfq0-bponid

Verify it by calculating the antiderivative:

https://wolfram.com/xid/0lddfq0-c4d9zx


https://wolfram.com/xid/0lddfq0-bfdh5d


https://wolfram.com/xid/0lddfq0-4nbst


https://wolfram.com/xid/0lddfq0-yncg8

Series Expansions (4)
Get the series expansion of some FoxH function at the origin:

https://wolfram.com/xid/0lddfq0-4jtrsn

The first three approximations of this FoxH function around :

https://wolfram.com/xid/0lddfq0-w7f9y9


https://wolfram.com/xid/0lddfq0-b93w4m

Find the series expansion of a general FoxH function at the origin:

https://wolfram.com/xid/0lddfq0-xa01rn

Find the series expansion of a general FoxH function at Infinity:

https://wolfram.com/xid/0lddfq0-pcvi6s

Get the general term in the series expansion using SeriesCoefficient:

https://wolfram.com/xid/0lddfq0-dznx2j

Applications (3)Sample problems that can be solved with this function
Use FoxHReduce to get the representation of almost any mathematical function in terms of FoxH:

https://wolfram.com/xid/0lddfq0-banq5y


https://wolfram.com/xid/0lddfq0-bbc3ez

A root of the trinomial equation can be written in terms of FoxH:

https://wolfram.com/xid/0lddfq0-xwj1zv

https://wolfram.com/xid/0lddfq0-koaz3h

The roots of the general trinomial can also be expressed in terms of FoxH:

https://wolfram.com/xid/0lddfq0-eq0bxf

https://wolfram.com/xid/0lddfq0-15wy4l

https://wolfram.com/xid/0lddfq0-tpjl0x

Express the PDF of StableDistribution in terms of FoxH for the case of :

https://wolfram.com/xid/0lddfq0-5vz4ij
Evaluate it and compare with the built-in PDF generated using StableDistribution:

https://wolfram.com/xid/0lddfq0-jp8sjf

Properties & Relations (2)Properties of the function, and connections to other functions
Use FunctionExpand to expand FoxH into simpler functions:

https://wolfram.com/xid/0lddfq0-qx23g


https://wolfram.com/xid/0lddfq0-f9o6o1

FoxHReduce returns FoxH representations of functions:

https://wolfram.com/xid/0lddfq0-2pfvc

Possible Issues (3)Common pitfalls and unexpected behavior
is a singular point of FoxH:

https://wolfram.com/xid/0lddfq0-sqkgbq

Series at the origin is available when the parameters are positive and
are positive and exact:

https://wolfram.com/xid/0lddfq0-lisa4d


https://wolfram.com/xid/0lddfq0-fegehx

Series at Infinity is available when the parameters are positive and
are positive and exact:

https://wolfram.com/xid/0lddfq0-nvks5o


https://wolfram.com/xid/0lddfq0-gdprhk

Neat Examples (1)Surprising or curious use cases
Many elementary and special functions are special cases of FoxH:

https://wolfram.com/xid/0lddfq0-2yke9s

https://wolfram.com/xid/0lddfq0-nytfuw

Wolfram Research (2021), FoxH, Wolfram Language function, https://reference.wolfram.com/language/ref/FoxH.html (updated 2021).
Text
Wolfram Research (2021), FoxH, Wolfram Language function, https://reference.wolfram.com/language/ref/FoxH.html (updated 2021).
Wolfram Research (2021), FoxH, Wolfram Language function, https://reference.wolfram.com/language/ref/FoxH.html (updated 2021).
CMS
Wolfram Language. 2021. "FoxH." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/FoxH.html.
Wolfram Language. 2021. "FoxH." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/FoxH.html.
APA
Wolfram Language. (2021). FoxH. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FoxH.html
Wolfram Language. (2021). FoxH. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FoxH.html
BibTeX
@misc{reference.wolfram_2025_foxh, author="Wolfram Research", title="{FoxH}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/FoxH.html}", note=[Accessed: 31-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_foxh, organization={Wolfram Research}, title={FoxH}, year={2021}, url={https://reference.wolfram.com/language/ref/FoxH.html}, note=[Accessed: 31-May-2025
]}