FullInformationOutputRegulator
✖
FullInformationOutputRegulator
gives the full state information output regulator for sys using specification rspec.
specifies the regulated outputs outi and the controlled inputs inj.
Details and Options


- FullInformationOutputRegulator returns a regulator that drives the sys outputs to zero and is typically used to suppress or track known inputs to the system.
- The system sys is taken to have state equations
and
and outputs
, with
being the controllable input. The state
is not affected by the input
and is used to model signals to suppress or track, as indicated by the output function
.
- Typical output functions
, which the regulator will drive to zero:
-
suppress the effects of on the states
cause to track
- The system sys can be StateSpaceModel, AffineStateSpaceModel, or NonlinearStateSpaceModel.
- The computed state feedback
regulates sys about an operating point using
.
- The state feedback
has the form
, where
,
, and
is computed following rspec.
- Possible regulator specifications rspec:
-
{"Poles",{p1,…}} computed with StateFeedbackGains {"Weights",{p,…}} computed with LQRegulatorGains {"Gains",κ} explicitly given gains - With the specification {"method",pars,opts}, the options opts are passed to the gain computation function.
- The outputs {out1,…} and inputs {in1,…} are part specifications and by default are taken to be All.

Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Compute the regulating feedback for a system with a constant disturbance of 0.5:

https://wolfram.com/xid/01lg39xalr04hou5q-80xxz0
The regulator is a function of the states and the disturbance state
:

https://wolfram.com/xid/01lg39xalr04hou5q-znqwvt


https://wolfram.com/xid/01lg39xalr04hou5q-xcbb2q

The output is regulated to zero:

https://wolfram.com/xid/01lg39xalr04hou5q-c6w8bj

https://wolfram.com/xid/01lg39xalr04hou5q-1dgu03

Scope (8)Survey of the scope of standard use cases
The regulator for a linear system with the exosystem pole at the origin:

https://wolfram.com/xid/01lg39xalr04hou5q-xjnz24


https://wolfram.com/xid/01lg39xalr04hou5q-3k8jbh

The exosystem has a pair of complex poles:

https://wolfram.com/xid/01lg39xalr04hou5q-8kn0ux

https://wolfram.com/xid/01lg39xalr04hou5q-ep043b


https://wolfram.com/xid/01lg39xalr04hou5q-htwnxn

The exosystem's states are part of the regulator:

https://wolfram.com/xid/01lg39xalr04hou5q-8xa4ja

https://wolfram.com/xid/01lg39xalr04hou5q-hji5ng


https://wolfram.com/xid/01lg39xalr04hou5q-ly5htl


https://wolfram.com/xid/01lg39xalr04hou5q-inbizy

The system is regulated if pf is negative:

https://wolfram.com/xid/01lg39xalr04hou5q-nu8uni

Regulate an AffineStateSpaceModel:

https://wolfram.com/xid/01lg39xalr04hou5q-sddj7a

Regulate a NonlinearStateSpaceModel:

https://wolfram.com/xid/01lg39xalr04hou5q-xiwndc

Specify the regulated outputs and feedback inputs:

https://wolfram.com/xid/01lg39xalr04hou5q-ptvzc

Use LQRegulatorGains to compute the stabilizing gains by specifying the weights:

https://wolfram.com/xid/01lg39xalr04hou5q-8o8m6q


https://wolfram.com/xid/01lg39xalr04hou5q-p2ysoy

Applications (6)Sample problems that can be solved with this function
Reject a disturbance modeled as :

https://wolfram.com/xid/01lg39xalr04hou5q-pqn11a
The full model of the system with disturbance:

https://wolfram.com/xid/01lg39xalr04hou5q-77gtvb

https://wolfram.com/xid/01lg39xalr04hou5q-8cr9mb


https://wolfram.com/xid/01lg39xalr04hou5q-8pn45c


https://wolfram.com/xid/01lg39xalr04hou5q-tkuy5g

The output is regulated in the presence of the disturbance:

https://wolfram.com/xid/01lg39xalr04hou5q-2bpvmz

https://wolfram.com/xid/01lg39xalr04hou5q-wmw4u1


https://wolfram.com/xid/01lg39xalr04hou5q-5a8gm9
The full model of the system and input model:

https://wolfram.com/xid/01lg39xalr04hou5q-cdl42x

https://wolfram.com/xid/01lg39xalr04hou5q-ibddnl


https://wolfram.com/xid/01lg39xalr04hou5q-jvlb1j


https://wolfram.com/xid/01lg39xalr04hou5q-ooq5wa


https://wolfram.com/xid/01lg39xalr04hou5q-vyyqfu

Simultaneously track a step input and reject a sinusoidal disturbance:

https://wolfram.com/xid/01lg39xalr04hou5q-doy3xr


https://wolfram.com/xid/01lg39xalr04hou5q-klc2k1


https://wolfram.com/xid/01lg39xalr04hou5q-zl4v3q


https://wolfram.com/xid/01lg39xalr04hou5q-odqckk


https://wolfram.com/xid/01lg39xalr04hou5q-w97svn


https://wolfram.com/xid/01lg39xalr04hou5q-ktwtto

The simulation shows the output tracking a step signal:

https://wolfram.com/xid/01lg39xalr04hou5q-0g88yk

Regulate an aircraft's longitudinal dynamics in the presence of disturbances:»

https://wolfram.com/xid/01lg39xalr04hou5q-y3lb4i
The disturbances consist of two frequency components:

https://wolfram.com/xid/01lg39xalr04hou5q-14b6v0

https://wolfram.com/xid/01lg39xalr04hou5q-j95gbs

A control law that regulates the output (speed) in the presence of the disturbances:

https://wolfram.com/xid/01lg39xalr04hou5q-tix8me


https://wolfram.com/xid/01lg39xalr04hou5q-1e0b5w

Simulation showing regulation being achieved:

https://wolfram.com/xid/01lg39xalr04hou5q-kl30xb


https://wolfram.com/xid/01lg39xalr04hou5q-log4o3

Regulate a Rössler prototype-4 system:»

https://wolfram.com/xid/01lg39xalr04hou5q-qnma0x

https://wolfram.com/xid/01lg39xalr04hou5q-8nzejx

The complete model such that the state is regulated and kept constant:

https://wolfram.com/xid/01lg39xalr04hou5q-vsgmni


https://wolfram.com/xid/01lg39xalr04hou5q-9jwmp1


https://wolfram.com/xid/01lg39xalr04hou5q-qhihbq

Simulations show that is regulated and the system has no chaotic behavior with feedback:

https://wolfram.com/xid/01lg39xalr04hou5q-8blu31

Regulate the voltage in a Chua circuit to follow a sinusoid while rejecting a disturbance
that is the output of another Chua circuit:»

The affine model of the Chua circuit where the nonlinearity is a cubic polynomial:

https://wolfram.com/xid/01lg39xalr04hou5q-owf96l

https://wolfram.com/xid/01lg39xalr04hou5q-y49ytn
The exosystem, where ω is the frequency of the sinusoid to be tracked:

https://wolfram.com/xid/01lg39xalr04hou5q-v4mr7n

https://wolfram.com/xid/01lg39xalr04hou5q-n9ipd2

https://wolfram.com/xid/01lg39xalr04hou5q-6gbhuu

The poles of the disturbance model:

https://wolfram.com/xid/01lg39xalr04hou5q-gwt7o3

The system poles consist of the three new poles and the stabilizable poles:

https://wolfram.com/xid/01lg39xalr04hou5q-4pvrjo


https://wolfram.com/xid/01lg39xalr04hou5q-xrmdal


https://wolfram.com/xid/01lg39xalr04hou5q-s5myjw

The simulation shows that the regulation is achieved:

https://wolfram.com/xid/01lg39xalr04hou5q-kcesg6

Properties & Relations (4)Properties of the function, and connections to other functions
StateFeedbackGains is a special case:

https://wolfram.com/xid/01lg39xalr04hou5q-q2qlf6

https://wolfram.com/xid/01lg39xalr04hou5q-leqj70


https://wolfram.com/xid/01lg39xalr04hou5q-5tt0ls

LQRegulatorGains is a special case:

https://wolfram.com/xid/01lg39xalr04hou5q-29bv7p

https://wolfram.com/xid/01lg39xalr04hou5q-unjs0m


https://wolfram.com/xid/01lg39xalr04hou5q-wrdtg7

Obtain the closed-loop system using SystemsModelStateFeedbackConnect:

https://wolfram.com/xid/01lg39xalr04hou5q-3iqdmg

https://wolfram.com/xid/01lg39xalr04hou5q-1qtz0r

Output regulation is achieved:

https://wolfram.com/xid/01lg39xalr04hou5q-lrkd8o

https://wolfram.com/xid/01lg39xalr04hou5q-dxgwfp


https://wolfram.com/xid/01lg39xalr04hou5q-ywbfrc


https://wolfram.com/xid/01lg39xalr04hou5q-5u7rsj

Wolfram Research (2014), FullInformationOutputRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html.
Text
Wolfram Research (2014), FullInformationOutputRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html.
Wolfram Research (2014), FullInformationOutputRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html.
CMS
Wolfram Language. 2014. "FullInformationOutputRegulator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html.
Wolfram Language. 2014. "FullInformationOutputRegulator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html.
APA
Wolfram Language. (2014). FullInformationOutputRegulator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html
Wolfram Language. (2014). FullInformationOutputRegulator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html
BibTeX
@misc{reference.wolfram_2025_fullinformationoutputregulator, author="Wolfram Research", title="{FullInformationOutputRegulator}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html}", note=[Accessed: 30-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_fullinformationoutputregulator, organization={Wolfram Research}, title={FullInformationOutputRegulator}, year={2014}, url={https://reference.wolfram.com/language/ref/FullInformationOutputRegulator.html}, note=[Accessed: 30-March-2025
]}