OwenT
✖
OwenT
Details

- Mathematical function, suitable for both symbolic and numerical evaluation.
for real
.
- OwenT[x,a] is an entire function of x with no branch cut discontinuities.
- OwenT[x,a] has branch cut discontinuities in the complex a plane running from
to
.
- For certain special arguments, OwenT automatically evaluates to exact values.
- OwenT can be evaluated to arbitrary numerical precision.
- OwenT automatically threads over lists.
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0cg5yhtbv-jqirte

Plot over a subset of the reals:

https://wolfram.com/xid/0cg5yhtbv-bi2uyi


https://wolfram.com/xid/0cg5yhtbv-eubfov

Plot over a subset of the complexes:

https://wolfram.com/xid/0cg5yhtbv-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0cg5yhtbv-t1nfp

Series expansion at Infinity:

https://wolfram.com/xid/0cg5yhtbv-cugjvu

Series expansion at a singular point:

https://wolfram.com/xid/0cg5yhtbv-iffsoc

Scope (38)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0cg5yhtbv-cksbl4


https://wolfram.com/xid/0cg5yhtbv-wlv0g


https://wolfram.com/xid/0cg5yhtbv-b0wt9

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0cg5yhtbv-y7k4a


https://wolfram.com/xid/0cg5yhtbv-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0cg5yhtbv-di5gcr


https://wolfram.com/xid/0cg5yhtbv-bq2c6r

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0cg5yhtbv-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0cg5yhtbv-thgd2

Or compute the matrix OwenT function using MatrixFunction:

https://wolfram.com/xid/0cg5yhtbv-o5jpo

Specific Values (5)
Values of OwenT at fixed points:

https://wolfram.com/xid/0cg5yhtbv-nww7l

OwenT for symbolic a:

https://wolfram.com/xid/0cg5yhtbv-fc9m8o


https://wolfram.com/xid/0cg5yhtbv-bmqd0y

Find the first positive maximum of OwenT[x,1 ]:

https://wolfram.com/xid/0cg5yhtbv-f2hrld


https://wolfram.com/xid/0cg5yhtbv-cc4pqr

Compute the associated OwenT[x,1] function:

https://wolfram.com/xid/0cg5yhtbv-klij8s

Visualization (3)
Plot the OwenT function for various parameters:

https://wolfram.com/xid/0cg5yhtbv-ecj8m7


https://wolfram.com/xid/0cg5yhtbv-beyki2


https://wolfram.com/xid/0cg5yhtbv-zpr05

Plot the real part of the function as two parameters vary:

https://wolfram.com/xid/0cg5yhtbv-elqrq8

Function Properties (11)
OwenT is defined for all real values:

https://wolfram.com/xid/0cg5yhtbv-cl7ele


https://wolfram.com/xid/0cg5yhtbv-de3irc

is even with respect to
and odd with respect to
:

https://wolfram.com/xid/0cg5yhtbv-dnla5q


https://wolfram.com/xid/0cg5yhtbv-bign6j

OwenT may reduce to a simpler form:

https://wolfram.com/xid/0cg5yhtbv-c1zts4


https://wolfram.com/xid/0cg5yhtbv-lk64xf

OwenT is an analytic function in both its arguments:

https://wolfram.com/xid/0cg5yhtbv-h5x4l2

It is not an analytic function over the complexes:

https://wolfram.com/xid/0cg5yhtbv-vuist

OwenT is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0cg5yhtbv-rmb7f


https://wolfram.com/xid/0cg5yhtbv-8nsw5z


https://wolfram.com/xid/0cg5yhtbv-zf7zy


https://wolfram.com/xid/0cg5yhtbv-wybzkl


https://wolfram.com/xid/0cg5yhtbv-c5tkuy


https://wolfram.com/xid/0cg5yhtbv-oofpk0

OwenT has no singularities or discontinuities:

https://wolfram.com/xid/0cg5yhtbv-ho029y

has branch cut discontinuities with respect to
over the complexes:

https://wolfram.com/xid/0cg5yhtbv-c20lli


https://wolfram.com/xid/0cg5yhtbv-2gvuj

OwenT is neither convex nor concave:

https://wolfram.com/xid/0cg5yhtbv-duxck

TraditionalForm formatting:

https://wolfram.com/xid/0cg5yhtbv-biam2o

Differentiation (4)
First derivative with respect to x:

https://wolfram.com/xid/0cg5yhtbv-krpoah

Higher derivatives with respect to x:

https://wolfram.com/xid/0cg5yhtbv-z33jv

Plot the higher derivatives with respect to x when a=1.5:

https://wolfram.com/xid/0cg5yhtbv-fxwmfc

First derivative with respect to a:

https://wolfram.com/xid/0cg5yhtbv-dhgaw2

Higher derivatives with respect to a:

https://wolfram.com/xid/0cg5yhtbv-nx5bsu

Plot the higher derivatives with respect to a when x=0.5:

https://wolfram.com/xid/0cg5yhtbv-c1xxhb

Integration (4)
Compute the indefinite integral with respect to using Integrate:

https://wolfram.com/xid/0cg5yhtbv-bponid


https://wolfram.com/xid/0cg5yhtbv-op9yly

Compute the indefinite integral with respect to :

https://wolfram.com/xid/0cg5yhtbv-c4ni28


https://wolfram.com/xid/0cg5yhtbv-23a5n


https://wolfram.com/xid/0cg5yhtbv-bfdh5d


https://wolfram.com/xid/0cg5yhtbv-4nbst


https://wolfram.com/xid/0cg5yhtbv-yncg8


https://wolfram.com/xid/0cg5yhtbv-bf5nsh

Series Expansions (2)
Find the Taylor expansion using Series:

https://wolfram.com/xid/0cg5yhtbv-ewr1h8

Plots of the first three approximations around :

https://wolfram.com/xid/0cg5yhtbv-binhar

Taylor expansion at a generic point:

https://wolfram.com/xid/0cg5yhtbv-jwxla7

Function Identities (3)
Ordinary differential equation with respect to satisfied by
:

https://wolfram.com/xid/0cg5yhtbv-c9s5wf

Ordinary differential equation with respect to satisfied by
:

https://wolfram.com/xid/0cg5yhtbv-h6kqn1

Partial differential equation satisfied by :

https://wolfram.com/xid/0cg5yhtbv-rb4u3

Applications (6)Sample problems that can be solved with this function
Plot Owen's T-function in the complex a plane:

https://wolfram.com/xid/0cg5yhtbv-bzo6k

Compute the CDF of SkewNormalDistribution:

https://wolfram.com/xid/0cg5yhtbv-ek7p0p

Compute the probability of an uncorrelated bivariate normal over a truncated wedge:

https://wolfram.com/xid/0cg5yhtbv-cwn3p3


https://wolfram.com/xid/0cg5yhtbv-e8iup0

The probability that a standard binormal variate with correlation lies within an equilateral triangle can be expressed using OwenT:

https://wolfram.com/xid/0cg5yhtbv-cs7c0w
Generate and visualize the region:

https://wolfram.com/xid/0cg5yhtbv-e5joza


https://wolfram.com/xid/0cg5yhtbv-comurd

Evaluate the probability for a particular value of the correlation coefficient:

https://wolfram.com/xid/0cg5yhtbv-gd2npf

Use NProbability to compute the probability directly:

https://wolfram.com/xid/0cg5yhtbv-bqbrn6

Use OwenT to compute the standard BinormalDistribution probability of :

https://wolfram.com/xid/0cg5yhtbv-r08oo

https://wolfram.com/xid/0cg5yhtbv-y1741


https://wolfram.com/xid/0cg5yhtbv-hmisy8

Compute the mean residual life function of a skew-normal random variate:

https://wolfram.com/xid/0cg5yhtbv-fuyu0j

Plot the mean residual life function for several values of parameter , including the limiting case of a normal variate, i.e.
:

https://wolfram.com/xid/0cg5yhtbv-3pn8al

Wolfram Research (2010), OwenT, Wolfram Language function, https://reference.wolfram.com/language/ref/OwenT.html.
Text
Wolfram Research (2010), OwenT, Wolfram Language function, https://reference.wolfram.com/language/ref/OwenT.html.
Wolfram Research (2010), OwenT, Wolfram Language function, https://reference.wolfram.com/language/ref/OwenT.html.
CMS
Wolfram Language. 2010. "OwenT." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/OwenT.html.
Wolfram Language. 2010. "OwenT." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/OwenT.html.
APA
Wolfram Language. (2010). OwenT. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/OwenT.html
Wolfram Language. (2010). OwenT. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/OwenT.html
BibTeX
@misc{reference.wolfram_2025_owent, author="Wolfram Research", title="{OwenT}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/OwenT.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_owent, organization={Wolfram Research}, title={OwenT}, year={2010}, url={https://reference.wolfram.com/language/ref/OwenT.html}, note=[Accessed: 29-March-2025
]}