PowerSymmetricPolynomial

PowerSymmetricPolynomial[r]

表示具有指数 r 的形式幂对称多项式.

PowerSymmetricPolynomial[{r1,r2,}]

表示指数为 r1r2 的多元形式幂对称多项式.

PowerSymmetricPolynomial[rspec,data]

给出 data 中的幂对称多项式.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (1)

范围  (3)

阶数为0的 PowerSymmetricPolynomial 实际上是数据点的数目:

使用 MomentEvaluate 计算数据的形式幂对称多项式:

TraditionalForm 格式:

应用  (1)

使用 AugmentedSymmetricPolynomial 将幂对称多项式线性化:

检查5个变量的相等性:

属性和关系  (1)

PowerSymmetricPolynomial 等同于单指数的 AugmentedSymmetricPolynomial

这种关系也适用于多元情况:

Wolfram Research (2010),PowerSymmetricPolynomial,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

文本

Wolfram Research (2010),PowerSymmetricPolynomial,Wolfram 语言函数,https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

CMS

Wolfram 语言. 2010. "PowerSymmetricPolynomial." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html.

APA

Wolfram 语言. (2010). PowerSymmetricPolynomial. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html 年

BibTeX

@misc{reference.wolfram_2024_powersymmetricpolynomial, author="Wolfram Research", title="{PowerSymmetricPolynomial}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_powersymmetricpolynomial, organization={Wolfram Research}, title={PowerSymmetricPolynomial}, year={2010}, url={https://reference.wolfram.com/language/ref/PowerSymmetricPolynomial.html}, note=[Accessed: 22-November-2024 ]}