RegionDimension
✖
RegionDimension
Details and Options

- The geometric dimension d of reg is the largest d such that a d-dimensional ball can be completely embedded in the region.
- Typical names for regions of different dimensions include:
-
0 points 1 lines, curves, arcs, segments, intervals 2 planes, surfaces 3 solids, volumes - Example cases with rows corresponding to embedding dimension and columns to RegionDimension:
- RegionDimension takes an Assumptions option that can be used to specify assumptions on parameters.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0d6g6qvxrm-kmy52s


https://wolfram.com/xid/0d6g6qvxrm-fu7fny


https://wolfram.com/xid/0d6g6qvxrm-b64xxx


https://wolfram.com/xid/0d6g6qvxrm-p0rmz


https://wolfram.com/xid/0d6g6qvxrm-c9f3le


https://wolfram.com/xid/0d6g6qvxrm-cf7hvq


https://wolfram.com/xid/0d6g6qvxrm-9572i


https://wolfram.com/xid/0d6g6qvxrm-g218v8


https://wolfram.com/xid/0d6g6qvxrm-cydx0v


https://wolfram.com/xid/0d6g6qvxrm-bi05hm


https://wolfram.com/xid/0d6g6qvxrm-bza0j1


https://wolfram.com/xid/0d6g6qvxrm-igx9q


https://wolfram.com/xid/0d6g6qvxrm-bc2s9n


https://wolfram.com/xid/0d6g6qvxrm-hr0a48

Scope (17)Survey of the scope of standard use cases
Special Regions (4)
Regions in including Point:

https://wolfram.com/xid/0d6g6qvxrm-cgwczk


https://wolfram.com/xid/0d6g6qvxrm-dj73or


https://wolfram.com/xid/0d6g6qvxrm-eoamtr

Regions in including Point:

https://wolfram.com/xid/0d6g6qvxrm-ff95qq


https://wolfram.com/xid/0d6g6qvxrm-c9j8dd

Line:

https://wolfram.com/xid/0d6g6qvxrm-bjgri3


https://wolfram.com/xid/0d6g6qvxrm-cvkhkk


https://wolfram.com/xid/0d6g6qvxrm-kyyvln


https://wolfram.com/xid/0d6g6qvxrm-ca5l2m

Disk:

https://wolfram.com/xid/0d6g6qvxrm-b1cbms


https://wolfram.com/xid/0d6g6qvxrm-cdv8fs

Regions in including Point:

https://wolfram.com/xid/0d6g6qvxrm-hnubnh


https://wolfram.com/xid/0d6g6qvxrm-eeut6h

Line:

https://wolfram.com/xid/0d6g6qvxrm-hoqrd8


https://wolfram.com/xid/0d6g6qvxrm-mkjlej


https://wolfram.com/xid/0d6g6qvxrm-brf9tr


https://wolfram.com/xid/0d6g6qvxrm-ln36yy


https://wolfram.com/xid/0d6g6qvxrm-c3xs9v


https://wolfram.com/xid/0d6g6qvxrm-u9k2e

Regions in including Simplex in
:

https://wolfram.com/xid/0d6g6qvxrm-kukhfy

Cuboid in :

https://wolfram.com/xid/0d6g6qvxrm-kojw4f

Ball in :

https://wolfram.com/xid/0d6g6qvxrm-hhrdfi

Formula Regions (3)
The dimension of a disk represented as an ImplicitRegion:

https://wolfram.com/xid/0d6g6qvxrm-bxcpan

https://wolfram.com/xid/0d6g6qvxrm-dotrh7


https://wolfram.com/xid/0d6g6qvxrm-qjnxx


https://wolfram.com/xid/0d6g6qvxrm-b9ijej

The dimension of a disk represented as a ParametricRegion:

https://wolfram.com/xid/0d6g6qvxrm-jgtmd

Using a rational parametrization of the disk:

https://wolfram.com/xid/0d6g6qvxrm-d5r1up


https://wolfram.com/xid/0d6g6qvxrm-mx0s

ImplicitRegion can have several components of different dimension:

https://wolfram.com/xid/0d6g6qvxrm-d4mmo3

https://wolfram.com/xid/0d6g6qvxrm-irlsf

RegionDimension gives the largest dimension:

https://wolfram.com/xid/0d6g6qvxrm-bynuh2

Mesh Regions (4)
The dimension of a BoundaryMeshRegion:

https://wolfram.com/xid/0d6g6qvxrm-dd1gl


https://wolfram.com/xid/0d6g6qvxrm-if42fs


https://wolfram.com/xid/0d6g6qvxrm-d6f2da


https://wolfram.com/xid/0d6g6qvxrm-dmxirt


https://wolfram.com/xid/0d6g6qvxrm-hc2qlx


https://wolfram.com/xid/0d6g6qvxrm-b14w9

The dimension of a MeshRegion:

https://wolfram.com/xid/0d6g6qvxrm-ekd12c


https://wolfram.com/xid/0d6g6qvxrm-c2bfdx


https://wolfram.com/xid/0d6g6qvxrm-ecrmly


https://wolfram.com/xid/0d6g6qvxrm-b52xw8


https://wolfram.com/xid/0d6g6qvxrm-qkprr


https://wolfram.com/xid/0d6g6qvxrm-h9ete0

A MeshRegion can have components of different dimension:

https://wolfram.com/xid/0d6g6qvxrm-cuq63

The RegionDimension is the largest dimension:

https://wolfram.com/xid/0d6g6qvxrm-8w1ev

Derived Regions (4)
The dimension of a RegionIntersection:

https://wolfram.com/xid/0d6g6qvxrm-plli4y

https://wolfram.com/xid/0d6g6qvxrm-irl1hp


https://wolfram.com/xid/0d6g6qvxrm-j0fjs3

The dimension of a TransformedRegion:

https://wolfram.com/xid/0d6g6qvxrm-f0ggnh

https://wolfram.com/xid/0d6g6qvxrm-narsqv


https://wolfram.com/xid/0d6g6qvxrm-exycnl

The dimension of a RegionBoundary:

https://wolfram.com/xid/0d6g6qvxrm-hgc525

https://wolfram.com/xid/0d6g6qvxrm-emf8i2

RegionBoundary for a full-dimensional region is less than the original dimension:

https://wolfram.com/xid/0d6g6qvxrm-y259m

RegionDimension for an intersection can be less than the original dimensions:

https://wolfram.com/xid/0d6g6qvxrm-dpd69u

https://wolfram.com/xid/0d6g6qvxrm-fmu1bx

https://wolfram.com/xid/0d6g6qvxrm-f846ns


https://wolfram.com/xid/0d6g6qvxrm-c4t094

The dimension can drop by more than one:

https://wolfram.com/xid/0d6g6qvxrm-bbv3v5

https://wolfram.com/xid/0d6g6qvxrm-c61td

https://wolfram.com/xid/0d6g6qvxrm-gx6mzl


https://wolfram.com/xid/0d6g6qvxrm-bxtrwb

Geographic Regions (2)
Polygons with GeoPosition:

https://wolfram.com/xid/0d6g6qvxrm-1lk1dy

https://wolfram.com/xid/0d6g6qvxrm-8vjhh8

Polygons with GeoPositionXYZ:

https://wolfram.com/xid/0d6g6qvxrm-4dy58p

https://wolfram.com/xid/0d6g6qvxrm-pzmsx0

Polygons with GeoPositionENU:

https://wolfram.com/xid/0d6g6qvxrm-sz3fv8

https://wolfram.com/xid/0d6g6qvxrm-pjpdg1

Polygons with GeoGridPosition:

https://wolfram.com/xid/0d6g6qvxrm-ipsiqu

https://wolfram.com/xid/0d6g6qvxrm-yjciq7

Applications (8)Sample problems that can be solved with this function
A zero-dimensional object is a collection of points:

https://wolfram.com/xid/0d6g6qvxrm-fbzabv

https://wolfram.com/xid/0d6g6qvxrm-dcyt69


https://wolfram.com/xid/0d6g6qvxrm-ggfam6

A one-dimensional object is a collection of curves:

https://wolfram.com/xid/0d6g6qvxrm-s2wl0i

https://wolfram.com/xid/0d6g6qvxrm-2fb88r

https://wolfram.com/xid/0d6g6qvxrm-6dkko1

https://wolfram.com/xid/0d6g6qvxrm-nhfz24


https://wolfram.com/xid/0d6g6qvxrm-7pz529

A two-dimensional object is a collection of surfaces:

https://wolfram.com/xid/0d6g6qvxrm-o3c6r2

https://wolfram.com/xid/0d6g6qvxrm-r4aax9


https://wolfram.com/xid/0d6g6qvxrm-tr5853

Use RegionDimension to tell the difference between a volume and a surface:

https://wolfram.com/xid/0d6g6qvxrm-o96zmr
Regions may be visually identical:

https://wolfram.com/xid/0d6g6qvxrm-l80lle


https://wolfram.com/xid/0d6g6qvxrm-c0rx0x

Compute dimension of regions that cannot be visualized:

https://wolfram.com/xid/0d6g6qvxrm-1t8fiv

https://wolfram.com/xid/0d6g6qvxrm-qgogjo

The unit for RegionMeasure is with
the length unit and
:

https://wolfram.com/xid/0d6g6qvxrm-jawpve

https://wolfram.com/xid/0d6g6qvxrm-6kx2la
Compute the measure of each region:

https://wolfram.com/xid/0d6g6qvxrm-kz2mcn


https://wolfram.com/xid/0d6g6qvxrm-lxkn5y

Compare with the result from RegionMeasure:

https://wolfram.com/xid/0d6g6qvxrm-r212h4

Extract MeshRegion primitives by dimension using MeshPrimitives:

https://wolfram.com/xid/0d6g6qvxrm-umzmd9


https://wolfram.com/xid/0d6g6qvxrm-wl597j

https://wolfram.com/xid/0d6g6qvxrm-fwf50r


https://wolfram.com/xid/0d6g6qvxrm-xqnp7q

Select only full-dimensional primitives:

https://wolfram.com/xid/0d6g6qvxrm-5n771t

https://wolfram.com/xid/0d6g6qvxrm-6npg2s

Properties & Relations (8)Properties of the function, and connections to other functions
RegionDimension gives the largest dimension among parts of varying dimension:

https://wolfram.com/xid/0d6g6qvxrm-bhe75v

The RegionDimension is the largest dimension:

https://wolfram.com/xid/0d6g6qvxrm-4tces7

RegionEmbeddingDimension is the dimension of the space in which a region exists:

https://wolfram.com/xid/0d6g6qvxrm-63glw

https://wolfram.com/xid/0d6g6qvxrm-kij29y

It is always greater than or equal to RegionDimension:

https://wolfram.com/xid/0d6g6qvxrm-34818

https://wolfram.com/xid/0d6g6qvxrm-cs3bsw

DimensionalMeshComponents separates a mesh in different dimensional parts:

https://wolfram.com/xid/0d6g6qvxrm-qtw7p5


https://wolfram.com/xid/0d6g6qvxrm-pa78u8


https://wolfram.com/xid/0d6g6qvxrm-fsr3nj

RegionMeasure and RegionCentroid are dimension dependent:

https://wolfram.com/xid/0d6g6qvxrm-f2v8oh

https://wolfram.com/xid/0d6g6qvxrm-bbsag0


https://wolfram.com/xid/0d6g6qvxrm-d0al66


https://wolfram.com/xid/0d6g6qvxrm-nzcwx

Integration over a region is dimension dependent:

https://wolfram.com/xid/0d6g6qvxrm-qvg69


https://wolfram.com/xid/0d6g6qvxrm-euzy61

Since the dimension is 2, integration corresponds to a surface integral:

https://wolfram.com/xid/0d6g6qvxrm-d6qe7h


https://wolfram.com/xid/0d6g6qvxrm-kcghye

The RegionDimension of a RegionBoundary is one less than that of the input:

https://wolfram.com/xid/0d6g6qvxrm-cv2808

https://wolfram.com/xid/0d6g6qvxrm-kkfx6u

The RegionDimension of a RegionUnion is equal to the largest input dimension:

https://wolfram.com/xid/0d6g6qvxrm-dn4uoh

https://wolfram.com/xid/0d6g6qvxrm-kqq2h4

https://wolfram.com/xid/0d6g6qvxrm-nhml0b

RegionDimension of a RegionIntersection is no larger than the smallest input dimension:

https://wolfram.com/xid/0d6g6qvxrm-imfdq4

https://wolfram.com/xid/0d6g6qvxrm-d8m3d0


https://wolfram.com/xid/0d6g6qvxrm-1ny81


https://wolfram.com/xid/0d6g6qvxrm-jzyk63

https://wolfram.com/xid/0d6g6qvxrm-lr3tgw


https://wolfram.com/xid/0d6g6qvxrm-bwgo5l

Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.
Text
Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.
Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.
CMS
Wolfram Language. 2014. "RegionDimension." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDimension.html.
Wolfram Language. 2014. "RegionDimension." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDimension.html.
APA
Wolfram Language. (2014). RegionDimension. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDimension.html
Wolfram Language. (2014). RegionDimension. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDimension.html
BibTeX
@misc{reference.wolfram_2025_regiondimension, author="Wolfram Research", title="{RegionDimension}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDimension.html}", note=[Accessed: 19-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_regiondimension, organization={Wolfram Research}, title={RegionDimension}, year={2014}, url={https://reference.wolfram.com/language/ref/RegionDimension.html}, note=[Accessed: 19-May-2025
]}