WOLFRAM

gives the geometric dimension of the region reg.

Details and Options

  • The geometric dimension d of reg is the largest d such that a d-dimensional ball can be completely embedded in the region.
  • Typical names for regions of different dimensions include:
  • 0points
    1lines, curves, arcs, segments, intervals
    2planes, surfaces
    3solids, volumes
  • Example cases with rows corresponding to embedding dimension and columns to RegionDimension:
  • RegionDimension takes an Assumptions option that can be used to specify assumptions on parameters.

Examples

open allclose all

Basic Examples  (4)Summary of the most common use cases

The dimension of regions in :

Out[1]=1
Out[2]=2

The dimension of regions in :

Out[1]=1
Out[2]=2
Out[3]=3

The dimension of regions in :

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

The dimension of regions in :

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4
Out[5]=5

Scope  (17)Survey of the scope of standard use cases

Special Regions  (4)

Regions in including Point:

Out[1]=1

Interval:

Out[3]=3
Out[4]=4

Regions in including Point:

Out[1]=1
Out[2]=2

Line:

Out[3]=3
Out[4]=4

Circle:

Out[5]=5
Out[6]=6

Disk:

Out[7]=7
Out[8]=8

Regions in including Point:

Out[1]=1
Out[2]=2

Line:

Out[3]=3
Out[4]=4

Polygon:

Out[5]=5
Out[6]=6

Cylinder:

Out[7]=7
Out[8]=8

Regions in including Simplex in :

Out[1]=1

Cuboid in :

Out[2]=2

Ball in :

Out[3]=3

Formula Regions  (3)

The dimension of a disk represented as an ImplicitRegion:

Out[10]=10
Out[4]=4

A cylinder:

Out[2]=2

The dimension of a disk represented as a ParametricRegion:

Out[1]=1

Using a rational parametrization of the disk:

Out[2]=2

A cylinder:

Out[3]=3

ImplicitRegion can have several components of different dimension:

Out[2]=2

RegionDimension gives the largest dimension:

Out[3]=3

Mesh Regions  (4)

The dimension of a BoundaryMeshRegion:

Out[1]=1
Out[2]=2

In 2D:

Out[3]=3
Out[4]=4

In 3D:

Out[5]=5
Out[6]=6

The dimension of a MeshRegion:

Out[1]=1
Out[2]=2

A 3D mesh in 3D:

Out[3]=3
Out[4]=4

A 1D mesh embedded in 2D:

Out[1]=1
Out[2]=2

A MeshRegion can have components of different dimension:

Out[1]=1

The RegionDimension is the largest dimension:

Out[2]=2

Derived Regions  (4)

The dimension of a RegionIntersection:

Out[5]=5
Out[6]=6

The dimension of a TransformedRegion:

Out[2]=2
Out[3]=3

The dimension of a RegionBoundary:

Out[2]=2

RegionBoundary for a full-dimensional region is less than the original dimension:

Out[3]=3

RegionDimension for an intersection can be less than the original dimensions:

Out[3]=3
Out[4]=4

The dimension can drop by more than one:

Out[7]=7
Out[8]=8

Geographic Regions  (2)

Polygons with GeoPosition:

Out[2]=2

Polygons with GeoPositionXYZ:

Out[4]=4

Polygons with GeoPositionENU:

Out[6]=6

Polygons with GeoGridPosition:

Out[2]=2

Applications  (8)Sample problems that can be solved with this function

A zero-dimensional object is a collection of points:

Out[3]=3
Out[4]=4

A one-dimensional object is a collection of curves:

Out[4]=4
Out[5]=5

A two-dimensional object is a collection of surfaces:

Out[2]=2
Out[3]=3

Use RegionDimension to tell the difference between a volume and a surface:

Regions may be visually identical:

Out[2]=2

But differ in dimensionality:

Out[3]=3

Compute dimension of regions that cannot be visualized:

Out[2]=2

The unit for RegionMeasure is with the length unit and :

Compute the measure of each region:

Out[3]=3
Out[4]=4

Compare with the result from RegionMeasure:

Out[5]=5

Extract MeshRegion primitives by dimension using MeshPrimitives:

Out[1]=1
Out[3]=3
Out[4]=4

Select only full-dimensional primitives:

Out[2]=2

Properties & Relations  (8)Properties of the function, and connections to other functions

RegionDimension gives the largest dimension among parts of varying dimension:

Out[1]=1

The RegionDimension is the largest dimension:

Out[2]=2

RegionEmbeddingDimension is the dimension of the space in which a region exists:

Out[2]=2

It is always greater than or equal to RegionDimension:

Out[4]=4

DimensionalMeshComponents separates a mesh in different dimensional parts:

Out[1]=1
Out[2]=2
Out[3]=3

RegionMeasure and RegionCentroid are dimension dependent:

Out[2]=2
Out[3]=3
Out[4]=4

Integration over a region is dimension dependent:

Out[1]=1
Out[2]=2

Since the dimension is 2, integration corresponds to a surface integral:

Out[3]=3
Out[4]=4

The RegionDimension of a RegionBoundary is one less than that of the input:

Out[2]=2

The RegionDimension of a RegionUnion is equal to the largest input dimension:

Out[3]=3

RegionDimension of a RegionIntersection is no larger than the smallest input dimension:

Out[2]=2
Out[3]=3

But it can be smaller:

Out[5]=5
Out[6]=6
Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.
Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.

Text

Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.

Wolfram Research (2014), RegionDimension, Wolfram Language function, https://reference.wolfram.com/language/ref/RegionDimension.html.

CMS

Wolfram Language. 2014. "RegionDimension." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDimension.html.

Wolfram Language. 2014. "RegionDimension." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RegionDimension.html.

APA

Wolfram Language. (2014). RegionDimension. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDimension.html

Wolfram Language. (2014). RegionDimension. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RegionDimension.html

BibTeX

@misc{reference.wolfram_2025_regiondimension, author="Wolfram Research", title="{RegionDimension}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDimension.html}", note=[Accessed: 19-May-2025 ]}

@misc{reference.wolfram_2025_regiondimension, author="Wolfram Research", title="{RegionDimension}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/RegionDimension.html}", note=[Accessed: 19-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_regiondimension, organization={Wolfram Research}, title={RegionDimension}, year={2014}, url={https://reference.wolfram.com/language/ref/RegionDimension.html}, note=[Accessed: 19-May-2025 ]}

@online{reference.wolfram_2025_regiondimension, organization={Wolfram Research}, title={RegionDimension}, year={2014}, url={https://reference.wolfram.com/language/ref/RegionDimension.html}, note=[Accessed: 19-May-2025 ]}