ResidueSum
✖
ResidueSum
更多信息和选项

- ResidueSum 计算 f 的所有极点处留数的和. f 在极点 z0 处的留数被定义为 f 的 Laurent 展开式中
的系数.
- 留数和通常在用柯西留数定理计算围道积分中使用.
- 函数 f 应为满足约束条件 cons 的 x 的亚纯函数.
- cons 可以包含等式、不等式或它们的逻辑组合.
- 可给出以下选项:
-
Assumptions $Assumptions 对参数的假设 GenerateConditions Automatic 是否生成针对参数的条件 PerformanceGoal $PerformanceGoal 优先考虑速度还是质量

范例
打开所有单元关闭所有单元基本范例 (2)常见实例总结
范围 (6)标准用法实例范围调查
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-n0a9sr
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-b9h0mm
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-cn6b36
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-loac1
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-hfbvsm
Out[1]=1

ResidueSum 要求输入函数是亚纯函数:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-k8crkr

Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-dakjam
Out[2]=2

选项 (4)各选项的常用值和功能
Assumptions (1)
GenerateConditions (2)
默认情况下,ResidueSum 可能会对符号参数生成条件:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-osy2z
Out[1]=1

如果设定 GenerateConditionsNone,ResidueSum 将会失败,而不是给出有条件的结果:
In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-fe9ubz
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0rs5gqfoa-na5ydu
Out[3]=3

In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-tdcquw
Out[1]=1

如果设定 GenerateConditions->True,则汇报所有的条件:
In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-291b1m
Out[2]=2

PerformanceGoal (1)
用 PerformanceGoal 避免可能费时的计算:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-iz0sfq

Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-goftfp
Out[2]=2

应用 (1)用该函数可以解决的问题范例
属性和关系 (3)函数的属性及与其他函数的关联
用 FunctionPoles 求函数的极点:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-dawhi
Out[1]=1

用 Residue 求极点处的留数:
In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-dk8axc
Out[2]=2

ResidueSum 给出所有极点处留数的和:
In[3]:=3

✖
https://wolfram.com/xid/0rs5gqfoa-lr5yac
Out[3]=3

用 FunctionMeromorphic 测试函数是否为亚纯函数:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-yu0dv
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-kfvd
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0rs5gqfoa-c8yjzt
Out[3]=3

用 FunctionAnalytic 测试函数是否为复解析函数:
In[1]:=1

✖
https://wolfram.com/xid/0rs5gqfoa-gddcrb
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0rs5gqfoa-dsfi4v
Out[2]=2

Wolfram Research (2022),ResidueSum,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ResidueSum.html.
✖
Wolfram Research (2022),ResidueSum,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ResidueSum.html.
文本
Wolfram Research (2022),ResidueSum,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ResidueSum.html.
✖
Wolfram Research (2022),ResidueSum,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ResidueSum.html.
CMS
Wolfram 语言. 2022. "ResidueSum." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ResidueSum.html.
✖
Wolfram 语言. 2022. "ResidueSum." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ResidueSum.html.
APA
Wolfram 语言. (2022). ResidueSum. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ResidueSum.html 年
✖
Wolfram 语言. (2022). ResidueSum. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ResidueSum.html 年
BibTeX
✖
@misc{reference.wolfram_2025_residuesum, author="Wolfram Research", title="{ResidueSum}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/ResidueSum.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_residuesum, organization={Wolfram Research}, title={ResidueSum}, year={2022}, url={https://reference.wolfram.com/language/ref/ResidueSum.html}, note=[Accessed: 04-April-2025
]}