Series
✖
Series
更多信息和选项

- Series 可以建立标准的泰勒级数,以及包含负数次幂、分数次幂和对数的特定展开式.
- Series 检测奇点. On[Series::esss] 使 Series 产生关于奇点的信息.
- Series 可在点 x=∞ 处展开.
- 根据公式
,Series[f,{x,0,n}] 构造任意函数 f 的泰勒展开式.
- Series 用 D 有效地计算偏导数. 它假定不同的变量是独立的.
- Series 的结果通常是一个可以在其它函数中处理的 SeriesData 对象.
- Normal[series] 截取幂级数并把它转换为一个普通表达式.
- SeriesCoefficient[series,n] 求出 n 次项的系数.
- 可给出以下选项:
-
Analytic True 是否将无法识别的函数视为解析函数 Assumptions $Assumptions 关于参数的假设 SeriesTermGoal Automatic 近似式的项数
范例
打开所有单元关闭所有单元基本范例 (4)常见实例总结

https://wolfram.com/xid/0gipeq-y10


https://wolfram.com/xid/0gipeq-pu5


https://wolfram.com/xid/0gipeq-u3o


https://wolfram.com/xid/0gipeq-fxk


https://wolfram.com/xid/0gipeq-f9c


https://wolfram.com/xid/0gipeq-c9h0ye

范围 (10)标准用法实例范围调查
单元系列 (10)
Series 可以处理分数幂和对数:

https://wolfram.com/xid/0gipeq-smh


https://wolfram.com/xid/0gipeq-wpj


https://wolfram.com/xid/0gipeq-fe4


https://wolfram.com/xid/0gipeq-npt


https://wolfram.com/xid/0gipeq-y7v


https://wolfram.com/xid/0gipeq-luu


https://wolfram.com/xid/0gipeq-wyj


https://wolfram.com/xid/0gipeq-l5k


https://wolfram.com/xid/0gipeq-zfv


https://wolfram.com/xid/0gipeq-dm6


https://wolfram.com/xid/0gipeq-qqw


https://wolfram.com/xid/0gipeq-gso


https://wolfram.com/xid/0gipeq-g7p


https://wolfram.com/xid/0gipeq-s08


https://wolfram.com/xid/0gipeq-xyb


https://wolfram.com/xid/0gipeq-lvg

Series 可以给出渐近线级数:

https://wolfram.com/xid/0gipeq-one


https://wolfram.com/xid/0gipeq-idx


https://wolfram.com/xid/0gipeq-ln2


https://wolfram.com/xid/0gipeq-j82


https://wolfram.com/xid/0gipeq-hg8


https://wolfram.com/xid/0gipeq-gsm

推广和延伸 (4)推广和延伸使用的实例

https://wolfram.com/xid/0gipeq-flo

Series 按元素线性作用于列表:

https://wolfram.com/xid/0gipeq-d9u

Series 产生 SeriesData 表达式:

https://wolfram.com/xid/0gipeq-gw

Series 可以作用于近似数:

https://wolfram.com/xid/0gipeq-iet

选项 (4)各选项的常用值和功能
Analytic (1)
缺省下 Series 假设函数是解析的:

https://wolfram.com/xid/0gipeq-tvx


https://wolfram.com/xid/0gipeq-lhs

Assumptions (3)
用 Assumptions 指定应用展开的复平面上的区域:

https://wolfram.com/xid/0gipeq-gly


https://wolfram.com/xid/0gipeq-jgh


https://wolfram.com/xid/0gipeq-jbnfyu


https://wolfram.com/xid/0gipeq-k4jjxl


https://wolfram.com/xid/0gipeq-gcwza

应用 (8)用该函数可以解决的问题范例

https://wolfram.com/xid/0gipeq-c0o


https://wolfram.com/xid/0gipeq-ozt


https://wolfram.com/xid/0gipeq-p6o


https://wolfram.com/xid/0gipeq-i6o


https://wolfram.com/xid/0gipeq-ekg

用 U.S. coins 建立一个生成函数,列举改变的方式:

https://wolfram.com/xid/0gipeq-ba


https://wolfram.com/xid/0gipeq-p3p


https://wolfram.com/xid/0gipeq-grl


https://wolfram.com/xid/0gipeq-n4g


https://wolfram.com/xid/0gipeq-ug6


https://wolfram.com/xid/0gipeq-nny


https://wolfram.com/xid/0gipeq-dbu

绘制近似 Exp[x] 的级数的零:

https://wolfram.com/xid/0gipeq-it48a0

属性和关系 (10)函数的属性及与其他函数的关联
Series 通常将项保持到指定次数为止:

https://wolfram.com/xid/0gipeq-hht


https://wolfram.com/xid/0gipeq-l16

Normal 转换为普通多项式:

https://wolfram.com/xid/0gipeq-2a


https://wolfram.com/xid/0gipeq-xu0


https://wolfram.com/xid/0gipeq-n7


https://wolfram.com/xid/0gipeq-fy4


https://wolfram.com/xid/0gipeq-snt


https://wolfram.com/xid/0gipeq-pra


https://wolfram.com/xid/0gipeq-i76


https://wolfram.com/xid/0gipeq-x06


https://wolfram.com/xid/0gipeq-vi5


https://wolfram.com/xid/0gipeq-c4m

用 O[x] 强调级数的构建:

https://wolfram.com/xid/0gipeq-pd3

ComposeSeries 将一个级数作为一个函数,应用到另一个级数中:

https://wolfram.com/xid/0gipeq-wp3

InverseSeries 执行级数的逆操作,求出级数逆函数的级数:

https://wolfram.com/xid/0gipeq-dab


https://wolfram.com/xid/0gipeq-wtu


https://wolfram.com/xid/0gipeq-nu2

使用 FunctionAnalytic 检验函数是否为解析函数:

https://wolfram.com/xid/0gipeq-cy6veu

https://wolfram.com/xid/0gipeq-fc791q


https://wolfram.com/xid/0gipeq-b8crv7


https://wolfram.com/xid/0gipeq-b997hn

可能存在的问题 (7)常见隐患和异常行为
当存在奇点,Series 将尽可能的因式分解:

https://wolfram.com/xid/0gipeq-x5p


https://wolfram.com/xid/0gipeq-t7x


https://wolfram.com/xid/0gipeq-ucc


https://wolfram.com/xid/0gipeq-sp1


用 Normal 获取可以执行替代的普通表达式:

https://wolfram.com/xid/0gipeq-hav


https://wolfram.com/xid/0gipeq-clf


https://wolfram.com/xid/0gipeq-h3z


不是所有级数可以用有头部 SeriesData 的表达式来表示:

https://wolfram.com/xid/0gipeq-u1l


https://wolfram.com/xid/0gipeq-u18


https://wolfram.com/xid/0gipeq-ina

Series 没有改变独立于扩展变量的表达式:

https://wolfram.com/xid/0gipeq-dv7hth


https://wolfram.com/xid/0gipeq-kne4zm

Wolfram Research (1988),Series,Wolfram 语言函数,https://reference.wolfram.com/language/ref/Series.html (更新于 2020 年).
文本
Wolfram Research (1988),Series,Wolfram 语言函数,https://reference.wolfram.com/language/ref/Series.html (更新于 2020 年).
Wolfram Research (1988),Series,Wolfram 语言函数,https://reference.wolfram.com/language/ref/Series.html (更新于 2020 年).
CMS
Wolfram 语言. 1988. "Series." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/Series.html.
Wolfram 语言. 1988. "Series." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/Series.html.
APA
Wolfram 语言. (1988). Series. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/Series.html 年
Wolfram 语言. (1988). Series. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/Series.html 年
BibTeX
@misc{reference.wolfram_2025_series, author="Wolfram Research", title="{Series}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/Series.html}", note=[Accessed: 06-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_series, organization={Wolfram Research}, title={Series}, year={2020}, url={https://reference.wolfram.com/language/ref/Series.html}, note=[Accessed: 06-April-2025
]}