WOLFRAM

Copy to clipboard.
SolidAngle[p,{u1,,ud}]

gives the solid angle at the point p and spanned by the vectors u1,,ud.

Copy to clipboard.
SolidAngle[p,reg]

gives the solid angle subtended by the region reg.

Details

  • SolidAngle is also known as planar angle or spherical angle.
  • SolidAngle is typically used to measure the amount of the field of view from a point that an object covers.
  • SolidAngle[p,{u1,,ud}] is the measure of the intersection of the d-dimensional unit sphere Sphere[p] and the conic hull generated by the vectors u1,,ud.
  • SolidAngle[p,reg] is the measure of the intersection of the unit sphere centered at p and halflines from p through points of the region reg.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

The solid angle at the point {1/2,1/2,0} and spanned by the vectors {0,0,1}, {0,1,1}, {1,1,1} and {1,0,1}:

Out[4]=4
Out[5]=5

Scope  (2)Survey of the scope of standard use cases

Use SolidAngle to find the angle at the point and spanned by the vectors:

Out[1]=1
Out[2]=2

The solid angle subtended by the Cone[{{1,1,1},{0,0,0}}]:

Out[1]=1
Out[2]=2

Properties & Relations  (5)Properties of the function, and connections to other functions

SolidAngle[{0,0},{u1,u2}] is the planar angle between the halflines from the point p in the direction of u1 and u2:

Out[1]=1
Out[1]=1
Out[2]=2

SolidAngle[{0,0,0},{u1,u2,u3}] is the surface area of the triangle on the unit sphere with corner points :

Out[1]=1

In 2D, SolidAngle[p,Line[{q1,q2}] is equivalent to PlanarAngle[{q1,p,q2}]:

Out[1]=1

In 3D, SolidAngle[p,reg] is the surface area of the intersection of the unit sphere centered at p that lies in the infinite cone with vertex p and enclosing reg:

Out[1]=1
Out[2]=2

SolidAngle[p,{u1,,ud}] is equivalent to PolyhedronAngle[,p], where u1,,ud are vectors adjacent to the point p in a polyhedron :

Out[4]=4
Out[5]=5
Out[6]=6
Wolfram Research (2019), SolidAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/SolidAngle.html.
Copy to clipboard.
Wolfram Research (2019), SolidAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/SolidAngle.html.

Text

Wolfram Research (2019), SolidAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/SolidAngle.html.

Copy to clipboard.
Wolfram Research (2019), SolidAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/SolidAngle.html.

CMS

Wolfram Language. 2019. "SolidAngle." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SolidAngle.html.

Copy to clipboard.
Wolfram Language. 2019. "SolidAngle." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SolidAngle.html.

APA

Wolfram Language. (2019). SolidAngle. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SolidAngle.html

Copy to clipboard.
Wolfram Language. (2019). SolidAngle. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SolidAngle.html

BibTeX

@misc{reference.wolfram_2024_solidangle, author="Wolfram Research", title="{SolidAngle}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/SolidAngle.html}", note=[Accessed: 10-January-2025 ]}

Copy to clipboard.
@misc{reference.wolfram_2024_solidangle, author="Wolfram Research", title="{SolidAngle}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/SolidAngle.html}", note=[Accessed: 10-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_solidangle, organization={Wolfram Research}, title={SolidAngle}, year={2019}, url={https://reference.wolfram.com/language/ref/SolidAngle.html}, note=[Accessed: 10-January-2025 ]}

Copy to clipboard.
@online{reference.wolfram_2024_solidangle, organization={Wolfram Research}, title={SolidAngle}, year={2019}, url={https://reference.wolfram.com/language/ref/SolidAngle.html}, note=[Accessed: 10-January-2025 ]}