PlanarAngle
✖
PlanarAngle
gives the angle at p formed by the triangle with vertex points p, q1 and q2.
Details



- PlanarAngle is also known as angle.
- PlanarAngle[p{q1,q2}] gives the length of the arc of the unit circle Circle[p] delimited by the half-line from p through q1 on the left and the half-line from p to q2 on the right.
- Two half‐lines from p through q1 and q2 delimit two angles α1 and α2 at p.
- The following specifications "spec" can be given:
-
"Counterclockwise" angle formed by the counterclockwise rotation from q1 to q2 "Clockwise" angle formed by the clockwise rotation from q1 to q2 - PlanarAngle[p{q1,q2},"Counterclockwise"] is equivalent to PlanarAngle[p{q1,q2}].
- PlanarAngle[p{q1,q2},"Clockwise"] is equivalent to PlanarAngle[p{q2,q1}].
- PlanarAngle[{q1,p,q2}] is the angle subtended by the line segment q1 q2 from p.
- The triangle with vertex points q1, p and q2 defines three angles α1, α2 and α3 at p.
- The following specifications "spec" can be given:
-
"Interior" interior (inside) angle of the triangle at p "Exterior" exterior angle of the triangle at p "FullExterior" full exterior angle of the triangle at p - PlanarAngle[{q1,p,q2},"Interior"] is equivalent to PlanarAngle[{q1,p,q2}].
- PlanarAngle[{q1,p,q2},"Exterior"] is equivalent to π-PlanarAngle[{q1,p,q2}].
- PlanarAngle[{q1,p,q2},"FullExterior"] is equivalent to 2π-PlanarAngle[{q1,p,q2}].
- With the specification "Interior", "Exterior" or "FullExterior", PlanarAngle[p{q1,q2},"spec"] is taken to be PlanarAngle[{q1,p,q2},"spec"].
- With the specification "Counterclockwise" or "Clockwise", PlanarAngle[{q1,p,q2},"spec"] is taken to be PlanarAngle[p{q1,q2}, "spec"].
- PlanarAngle can be used with symbolic points in GeometricScene.




Examples
open allclose allBasic Examples (2)Summary of the most common use cases
The angle between the half‐lines from {0,0} through {1,1} and {1,0}:

https://wolfram.com/xid/0n4mw4d17jq-5qtb0u


https://wolfram.com/xid/0n4mw4d17jq-5mgpw7

The angle formed by a triangle at origin:

https://wolfram.com/xid/0n4mw4d17jq-25x74j


https://wolfram.com/xid/0n4mw4d17jq-tikovj

Scope (7)Survey of the scope of standard use cases
Basic Uses (2)
Use PlanarAngle to find the angle between two half‐lines:

https://wolfram.com/xid/0n4mw4d17jq-n05why


https://wolfram.com/xid/0n4mw4d17jq-x01uu4

PlanarAngle works with numeric arguments:

https://wolfram.com/xid/0n4mw4d17jq-lvqgwi


https://wolfram.com/xid/0n4mw4d17jq-ghrjq7

Specifications (5)
"Counterclockwise" (1)
"Clockwise" (1)
"Interior" (1)
"Exterior" (1)
Applications (6)Sample problems that can be solved with this function

https://wolfram.com/xid/0n4mw4d17jq-9fbw0g

https://wolfram.com/xid/0n4mw4d17jq-n4ifn6


https://wolfram.com/xid/0n4mw4d17jq-vj7szl


https://wolfram.com/xid/0n4mw4d17jq-matwcn

https://wolfram.com/xid/0n4mw4d17jq-694z52


https://wolfram.com/xid/0n4mw4d17jq-bphixo


https://wolfram.com/xid/0n4mw4d17jq-uobo2d

https://wolfram.com/xid/0n4mw4d17jq-f0w0vc


https://wolfram.com/xid/0n4mw4d17jq-vxs71l


https://wolfram.com/xid/0n4mw4d17jq-e0wgir

https://wolfram.com/xid/0n4mw4d17jq-2ktu1n


https://wolfram.com/xid/0n4mw4d17jq-sryusk

Find the interior angle of a triangle at a point p:

https://wolfram.com/xid/0n4mw4d17jq-odig9z

https://wolfram.com/xid/0n4mw4d17jq-cxyjin

https://wolfram.com/xid/0n4mw4d17jq-hjo7x3


https://wolfram.com/xid/0n4mw4d17jq-7jf61k

An AASTriangle:

https://wolfram.com/xid/0n4mw4d17jq-nufs4f


https://wolfram.com/xid/0n4mw4d17jq-ugmnb


https://wolfram.com/xid/0n4mw4d17jq-ztmib3


https://wolfram.com/xid/0n4mw4d17jq-8l3cjo


https://wolfram.com/xid/0n4mw4d17jq-uc5opr

Properties & Relations (7)Properties of the function, and connections to other functions
PlanarAngle[p,{q2,q1}] is equal to 2π-PlanarAngle[p,{q1,q2}]:

https://wolfram.com/xid/0n4mw4d17jq-414zxc


https://wolfram.com/xid/0n4mw4d17jq-0xtjvx

PlanarAngle[{q1,p,q2},"Interior"] is the smallest angle formed by the rotations around p:

https://wolfram.com/xid/0n4mw4d17jq-gav70s


https://wolfram.com/xid/0n4mw4d17jq-xwkpin

PlanarAngle[p{q1,q2}] takes values from 0 to 2π:

https://wolfram.com/xid/0n4mw4d17jq-knnf7m

PlanarAngle[{q1,p,q2}] takes values from 0 to π:

https://wolfram.com/xid/0n4mw4d17jq-pac8dj

Dihedral angle is the planar angle in the plane defined by the normal p2-p1 and a point p1:

https://wolfram.com/xid/0n4mw4d17jq-p3qmdf

https://wolfram.com/xid/0n4mw4d17jq-jg3w5h


https://wolfram.com/xid/0n4mw4d17jq-qqzulz

PlanarAngle[p->{q1,q2}] is equivalent to PolygonAngle[ℛ, p] where q1 and q2 are adjacent points of p in a polygon ℛ:

https://wolfram.com/xid/0n4mw4d17jq-fsm0rj


https://wolfram.com/xid/0n4mw4d17jq-h3aavt


https://wolfram.com/xid/0n4mw4d17jq-80zo14

PlanarAngle[{q1,p,q2}] is equivalent to SolidAngle[p,{q1,q2}:

https://wolfram.com/xid/0n4mw4d17jq-1kxdnt


https://wolfram.com/xid/0n4mw4d17jq-0uz03d


https://wolfram.com/xid/0n4mw4d17jq-chwid9

Possible Issues (1)Common pitfalls and unexpected behavior
PlanarAngle gives generic values for symbolic parameters:

https://wolfram.com/xid/0n4mw4d17jq-ykpc2

Wolfram Research (2019), PlanarAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/PlanarAngle.html.
Text
Wolfram Research (2019), PlanarAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/PlanarAngle.html.
Wolfram Research (2019), PlanarAngle, Wolfram Language function, https://reference.wolfram.com/language/ref/PlanarAngle.html.
CMS
Wolfram Language. 2019. "PlanarAngle." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PlanarAngle.html.
Wolfram Language. 2019. "PlanarAngle." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PlanarAngle.html.
APA
Wolfram Language. (2019). PlanarAngle. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PlanarAngle.html
Wolfram Language. (2019). PlanarAngle. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PlanarAngle.html
BibTeX
@misc{reference.wolfram_2025_planarangle, author="Wolfram Research", title="{PlanarAngle}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/PlanarAngle.html}", note=[Accessed: 05-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_planarangle, organization={Wolfram Research}, title={PlanarAngle}, year={2019}, url={https://reference.wolfram.com/language/ref/PlanarAngle.html}, note=[Accessed: 05-May-2025
]}