DiscreteLimit
✖
DiscreteLimit
gives the limit k∞f(k) for the sequence f as k tends to infinity over the integers.
Details and Options


- DiscreteLimit is also known as discrete limit or limit over the integers.
- DiscreteLimit computes the limiting value of a sequence f as its variables k or ki get arbitrarily large.
- DiscreteLimit[f,k∞] can be entered as
f. A template
can be entered as
dlim
, and
moves the cursor from the underscript to the body.
- DiscreteLimit[f,{k1,…,kn}{
,…,
}] can be entered as
…
f.
- The possible limit points
are ±∞.
- For a finite limit value f*:
-
DiscreteLimit[f,k∞]f* for every there is a
such that
implies
DiscreteLimit[f,{k1,…,kn}{∞,…,∞}]f* for every there is a
such that
implies
- DiscreteLimit[f[k],k-∞] is equivalent to DiscreteLimit[f[-l],l∞] etc.
- DiscreteLimit returns Indeterminate when it can prove that the limit does not exist, and returns unevaluated when no limit can be found.
- The following options can be given:
-
Assumptions $Assumptions assumptions on parameters GenerateConditions Automatic whether to generate conditions on parameters Method Automatic method to use PerformanceGoal "Quality" aspects of performance to optimize - Possible settings for GenerateConditions include:
-
Automatic non-generic conditions only True all conditions False no conditions None return unevaluated if conditions are needed - Possible settings for PerformanceGoal include $PerformanceGoal, "Quality" and "Speed". With the "Quality" setting, DiscreteLimit typically solves more problems or produces simpler results, but it potentially uses more time and memory.

Examples
open allclose allBasic Examples (4)Summary of the most common use cases

https://wolfram.com/xid/0enzj0dsy-dab3pa

Plot the sequence and its limit:

https://wolfram.com/xid/0enzj0dsy-naxyuq

Limit of a multivariate sequence:

https://wolfram.com/xid/0enzj0dsy-zhoqg

Plot the sequence and its limit:

https://wolfram.com/xid/0enzj0dsy-k3ivv

Use dlim
to enter the template
and
to move from the underscript to the body:

https://wolfram.com/xid/0enzj0dsy-e1mcaw

TraditionalForm typesetting:

https://wolfram.com/xid/0enzj0dsy-e82anr

Scope (37)Survey of the scope of standard use cases
Basic Uses (4)
Compute the limit of a sequence when n approaches Infinity:

https://wolfram.com/xid/0enzj0dsy-hb5uiw


https://wolfram.com/xid/0enzj0dsy-jenjxu

Compute the limit of a sequence when n approaches -Infinity:

https://wolfram.com/xid/0enzj0dsy-et7bpy

Compute a nested limit for a multivariate sequence:

https://wolfram.com/xid/0enzj0dsy-pukp4y

Compute the limit of a list of sequences:

https://wolfram.com/xid/0enzj0dsy-g45pgr

Elementary Function Sequences (7)
Find the limit of a rational sequence:

https://wolfram.com/xid/0enzj0dsy-lxbke9


https://wolfram.com/xid/0enzj0dsy-c6vm2a


https://wolfram.com/xid/0enzj0dsy-q2dwr


https://wolfram.com/xid/0enzj0dsy-g2hriz


https://wolfram.com/xid/0enzj0dsy-fxkte2


https://wolfram.com/xid/0enzj0dsy-ek16lf


https://wolfram.com/xid/0enzj0dsy-kox3rp


https://wolfram.com/xid/0enzj0dsy-fh66s0


https://wolfram.com/xid/0enzj0dsy-e5uei


https://wolfram.com/xid/0enzj0dsy-dm6ege

Inverse trigonometric sequence:

https://wolfram.com/xid/0enzj0dsy-lykjl


https://wolfram.com/xid/0enzj0dsy-yzua9


https://wolfram.com/xid/0enzj0dsy-8qd0z


https://wolfram.com/xid/0enzj0dsy-i4pw3x

Find the limit of ArcTan[Log[n]]:

https://wolfram.com/xid/0enzj0dsy-bcko2g


https://wolfram.com/xid/0enzj0dsy-lnyf1f

Integer Function Sequences (5)
Compute the limit of a binomial sequence:

https://wolfram.com/xid/0enzj0dsy-d8pfbn

Limits of sequences involving FactorialPower:

https://wolfram.com/xid/0enzj0dsy-ftvybu


https://wolfram.com/xid/0enzj0dsy-lmqwqq

Limits of sequences involving Factorial:

https://wolfram.com/xid/0enzj0dsy-b7gjcw


https://wolfram.com/xid/0enzj0dsy-dqkc2t


https://wolfram.com/xid/0enzj0dsy-9co6a


https://wolfram.com/xid/0enzj0dsy-ha08jt

Compute limits involving Fibonacci and LucasL:

https://wolfram.com/xid/0enzj0dsy-bcqotc


https://wolfram.com/xid/0enzj0dsy-htkqx9


https://wolfram.com/xid/0enzj0dsy-2jx94


https://wolfram.com/xid/0enzj0dsy-fyr369

Limit involving Pochhammer:

https://wolfram.com/xid/0enzj0dsy-8qnoq

Alternating Sequences (3)
Convergent alternating sequence:

https://wolfram.com/xid/0enzj0dsy-l018j


https://wolfram.com/xid/0enzj0dsy-d9uwn4

Divergent alternating sequence:

https://wolfram.com/xid/0enzj0dsy-jt1djy


https://wolfram.com/xid/0enzj0dsy-e3j59y

Oscillatory alternating sequence:

https://wolfram.com/xid/0enzj0dsy-c2a9wn


https://wolfram.com/xid/0enzj0dsy-k4obt0

Periodic Sequences (3)
Limits involving periodic sequences:

https://wolfram.com/xid/0enzj0dsy-hug9t9


https://wolfram.com/xid/0enzj0dsy-gnytrw


https://wolfram.com/xid/0enzj0dsy-pb2vbj


https://wolfram.com/xid/0enzj0dsy-bpl1lb


https://wolfram.com/xid/0enzj0dsy-cpqsv5


https://wolfram.com/xid/0enzj0dsy-k12ere


https://wolfram.com/xid/0enzj0dsy-d7z025


https://wolfram.com/xid/0enzj0dsy-k07f3o


https://wolfram.com/xid/0enzj0dsy-lmhs11


https://wolfram.com/xid/0enzj0dsy-bzcdcc

Piecewise Function Sequences (3)
A convergent piecewise sequence:

https://wolfram.com/xid/0enzj0dsy-vznig


https://wolfram.com/xid/0enzj0dsy-tz15g

A divergent piecewise sequence:

https://wolfram.com/xid/0enzj0dsy-xejfm


https://wolfram.com/xid/0enzj0dsy-m4nvru

Piecewise sequence with periodic conditions:

https://wolfram.com/xid/0enzj0dsy-d9ybuq


https://wolfram.com/xid/0enzj0dsy-skkms

Limit involving Floor:

https://wolfram.com/xid/0enzj0dsy-ccscxv


https://wolfram.com/xid/0enzj0dsy-00nnb5

Number Theoretic Function Sequences (4)
Compute limits involving Prime:

https://wolfram.com/xid/0enzj0dsy-c8zquf


https://wolfram.com/xid/0enzj0dsy-lasy8a


https://wolfram.com/xid/0enzj0dsy-kcv0us


https://wolfram.com/xid/0enzj0dsy-fq8b91

Prime is of order :

https://wolfram.com/xid/0enzj0dsy-fsldo


https://wolfram.com/xid/0enzj0dsy-v3pty

Limits involving PrimePi:

https://wolfram.com/xid/0enzj0dsy-ctmzmi


https://wolfram.com/xid/0enzj0dsy-xsf9u


https://wolfram.com/xid/0enzj0dsy-7e7a


https://wolfram.com/xid/0enzj0dsy-b8nou9

PrimePi is of order :

https://wolfram.com/xid/0enzj0dsy-fuinb4


https://wolfram.com/xid/0enzj0dsy-qbv5vf

Limits involving PartitionsP and PartitionsQ:

https://wolfram.com/xid/0enzj0dsy-gv4ho


https://wolfram.com/xid/0enzj0dsy-evj3r

Limits involving other number theoretic sequences:

https://wolfram.com/xid/0enzj0dsy-fiya71


https://wolfram.com/xid/0enzj0dsy-mdx71


https://wolfram.com/xid/0enzj0dsy-cl8agc


https://wolfram.com/xid/0enzj0dsy-f1s6nn


https://wolfram.com/xid/0enzj0dsy-ie03pn


https://wolfram.com/xid/0enzj0dsy-jdmej6

Nested and Multivariate Sequences (2)
Compute a nested sequence limit:

https://wolfram.com/xid/0enzj0dsy-b08k82

Plot the sequence and its limit:

https://wolfram.com/xid/0enzj0dsy-bx7d8j


https://wolfram.com/xid/0enzj0dsy-icispr


https://wolfram.com/xid/0enzj0dsy-bhhc93


https://wolfram.com/xid/0enzj0dsy-2sbsbp

Formal Sequences (6)
Compute limits of sequences involving Inactive sums:

https://wolfram.com/xid/0enzj0dsy-d6f62u


https://wolfram.com/xid/0enzj0dsy-f1dl7b


https://wolfram.com/xid/0enzj0dsy-byioul


https://wolfram.com/xid/0enzj0dsy-cysasg


https://wolfram.com/xid/0enzj0dsy-gz13ht

Nested limit of an Inactive sum:

https://wolfram.com/xid/0enzj0dsy-ppyjdx

Obtain the same result in two steps using an interchange of DiscreteLimit and Sum:

https://wolfram.com/xid/0enzj0dsy-w70qu


https://wolfram.com/xid/0enzj0dsy-gd8rz

Limits of sequences involving Inactive products:

https://wolfram.com/xid/0enzj0dsy-pc5wzj


https://wolfram.com/xid/0enzj0dsy-b9ctp5


https://wolfram.com/xid/0enzj0dsy-hac34

Nested limit of an Inactive product:

https://wolfram.com/xid/0enzj0dsy-dvd5oo

Obtain the same result in two steps using an interchange of DiscreteLimit and Product:

https://wolfram.com/xid/0enzj0dsy-bksy8


https://wolfram.com/xid/0enzj0dsy-fg6rh3

Limits of sequences involving Inactive continued fractions:

https://wolfram.com/xid/0enzj0dsy-b24jat


https://wolfram.com/xid/0enzj0dsy-fv0ch

Nested limit of an Inactive continued fraction:

https://wolfram.com/xid/0enzj0dsy-er10r

Obtain the same result in two steps using DiscreteLimit and ContinuedFractionK:

https://wolfram.com/xid/0enzj0dsy-blekj2


https://wolfram.com/xid/0enzj0dsy-ekenmi

Options (6)Common values & functionality for each option
Assumptions (1)
GenerateConditions (3)
Return a result without stating conditions:

https://wolfram.com/xid/0enzj0dsy-6rd3fa

This result is only valid if y>1:

https://wolfram.com/xid/0enzj0dsy-lftbu6

Return unevaluated if the results depend on the value of parameters:

https://wolfram.com/xid/0enzj0dsy-2lepxp

By default, conditions are generated that return a unique result:

https://wolfram.com/xid/0enzj0dsy-14nrvk

By default, conditions are not generated if only special values invalidate the result:

https://wolfram.com/xid/0enzj0dsy-uhm6gw

With GenerateConditions->True, even these non-generic conditions are reported:

https://wolfram.com/xid/0enzj0dsy-291b1m

Method (1)
Compute the limit of a sequence using the default method:

https://wolfram.com/xid/0enzj0dsy-gna87y

Obtain the same answer using a call to Limit:

https://wolfram.com/xid/0enzj0dsy-jt0cjx

The given sequence is not periodic, hence the method for periodic sequences fails:

https://wolfram.com/xid/0enzj0dsy-eqc0mj

PerformanceGoal (1)
DiscreteLimit computes limits involving sequences of arbitrarily large periods:

https://wolfram.com/xid/0enzj0dsy-i86kxj

https://wolfram.com/xid/0enzj0dsy-i9gq

Use PerformanceGoal to avoid potentially expensive computations in such cases:

https://wolfram.com/xid/0enzj0dsy-byiylb

The Method option overrides PerformanceGoal:

https://wolfram.com/xid/0enzj0dsy-bh9kxc

Applications (35)Sample problems that can be solved with this function
Geometric Limits (3)
The perimeter of a regular polygon of radius r and n sides:

https://wolfram.com/xid/0enzj0dsy-twy612

In the limit n->∞, the perimeter approaches the circumference of a circle of radius r:

https://wolfram.com/xid/0enzj0dsy-z6705c

The area of a regular polygon of radius r and n sides:

https://wolfram.com/xid/0enzj0dsy-6uyygg

In the limit n->∞, this approaches the area of a circle of radius r:

https://wolfram.com/xid/0enzj0dsy-qew1wi

Visualize the inscribed polygon and the approximate perimeter and area as n increases:

https://wolfram.com/xid/0enzj0dsy-ytsz6j

Consider covering a ball of radius r by 2n cylinders as shown in the figure:

https://wolfram.com/xid/0enzj0dsy-x5wzmd

The volume of the cylinders is:

https://wolfram.com/xid/0enzj0dsy-oa8uz1

Taking the DiscreteLimit as n->Infinity gives the volume of the ball:

https://wolfram.com/xid/0enzj0dsy-lvmxv2

Compare with a direct computation:

https://wolfram.com/xid/0enzj0dsy-to8z2u

Consider the following function and a set of rectangles defined by its plot:

https://wolfram.com/xid/0enzj0dsy-z9ud2d

https://wolfram.com/xid/0enzj0dsy-206nof
For n5 on the interval [0,2], the rectangles are the following:

https://wolfram.com/xid/0enzj0dsy-gbe5lc

The area of these rectangles defines a Riemann sum that approximates the area under the curve:

https://wolfram.com/xid/0enzj0dsy-d8rf0v

https://wolfram.com/xid/0enzj0dsy-blqncc

Use DiscreteLimit to obtain the exact answer:

https://wolfram.com/xid/0enzj0dsy-m82y4

Obtain the same area directly using Integrate:

https://wolfram.com/xid/0enzj0dsy-nkh41k

Visualize the process for this function as well as three others:

https://wolfram.com/xid/0enzj0dsy-g7o292

https://wolfram.com/xid/0enzj0dsy-g0awiw

Sums and Products (6)
Compute an infinite sum as the limit of a finite sum:

https://wolfram.com/xid/0enzj0dsy-e7wetu

Obtain the same answer using Sum:

https://wolfram.com/xid/0enzj0dsy-bucem8

The following sequence defines a convergent series:

https://wolfram.com/xid/0enzj0dsy-2g43zd

https://wolfram.com/xid/0enzj0dsy-cusunh


https://wolfram.com/xid/0enzj0dsy-gj6a2w

Compute the result directly using Sum:

https://wolfram.com/xid/0enzj0dsy-tmwr9b

Prove that an infinite series is divergent, starting with the sum of a finite number of terms:

https://wolfram.com/xid/0enzj0dsy-ouhy30

The series diverges, since the limit of the finite sums does not exist:

https://wolfram.com/xid/0enzj0dsy-e5njya

Confirm the divergence using SumConvergence and Sum:

https://wolfram.com/xid/0enzj0dsy-gkodeu


https://wolfram.com/xid/0enzj0dsy-ddrpmw


Obtain the Abel sum of the series using Regularization:

https://wolfram.com/xid/0enzj0dsy-jow48n

Compute a doubly infinite sum as a nested limit of a finite sum:

https://wolfram.com/xid/0enzj0dsy-y29fc


https://wolfram.com/xid/0enzj0dsy-z7xm9

Obtain the same answer directly using Sum:

https://wolfram.com/xid/0enzj0dsy-x7fhu

Compute an infinite product as a limit of a finite product:

https://wolfram.com/xid/0enzj0dsy-foynmc

Obtain the same answer using Product:

https://wolfram.com/xid/0enzj0dsy-enkto5

Construct a rotation matrix as a limit of repeated infinitesimal transformations:

https://wolfram.com/xid/0enzj0dsy-s9t


https://wolfram.com/xid/0enzj0dsy-knb

Compare with a direction construction:

https://wolfram.com/xid/0enzj0dsy-7uksox

Series Convergence (4)
Use the ratio test to verify convergence of a series whose general term is given by:

https://wolfram.com/xid/0enzj0dsy-e3ja4c
Compute the DiscreteRatio for this series:

https://wolfram.com/xid/0enzj0dsy-or9ve

The series converges, since the limit of the ratio is less than 1:

https://wolfram.com/xid/0enzj0dsy-gw0z8n

Verify the result using SumConvergence:

https://wolfram.com/xid/0enzj0dsy-dvwrjt

Use the root test to verify convergence of a series whose general term is given by:

https://wolfram.com/xid/0enzj0dsy-dg9vkx
The series converges, since the limit of the n root is less than 1:

https://wolfram.com/xid/0enzj0dsy-dbdj3t

Verify the result using SumConvergence:

https://wolfram.com/xid/0enzj0dsy-j6uqov

Use the Raabe test to verify convergence of a series whose general term is given by:

https://wolfram.com/xid/0enzj0dsy-hlfofg
Raabe's test applies because the ratio test is inconclusive:

https://wolfram.com/xid/0enzj0dsy-jda5ib

The series converges, since the following limit is greater than 1:

https://wolfram.com/xid/0enzj0dsy-1au62y

Verify the result using SumConvergence:

https://wolfram.com/xid/0enzj0dsy-i6d07k

Use the divergence test to verify divergence of a series whose general term is given by:

https://wolfram.com/xid/0enzj0dsy-btg6ia
The series diverges, since the limit of the general term is not 0:

https://wolfram.com/xid/0enzj0dsy-dnf8s5

Verify the result using SumConvergence:

https://wolfram.com/xid/0enzj0dsy-f4qaev

Classical Definition (3)
Show that the following sequence converges to 0, and verify the classical definition with ϵ=1/7:

https://wolfram.com/xid/0enzj0dsy-ciuuy

https://wolfram.com/xid/0enzj0dsy-jx1tfs


https://wolfram.com/xid/0enzj0dsy-hj4723
Use Reduce to show that the definition is satisfied for all n>=12:

https://wolfram.com/xid/0enzj0dsy-iej994

Verify the result using DiscretePlot:

https://wolfram.com/xid/0enzj0dsy-b8qjep

Show that the following sequence diverges to Infinity, and verify the classical definition with M=35:

https://wolfram.com/xid/0enzj0dsy-jnjv3a

https://wolfram.com/xid/0enzj0dsy-bdqyd


https://wolfram.com/xid/0enzj0dsy-hpzwn8
Use Reduce to show that the definition is satisfied for all n >= 10:

https://wolfram.com/xid/0enzj0dsy-czhyaa

Verify the result using DiscretePlot:

https://wolfram.com/xid/0enzj0dsy-dvwf9p

Determine the convergence of the harmonic series , whose terms are given by:

https://wolfram.com/xid/0enzj0dsy-j3gxce
Standard tests such as the ratio test are inconclusive:

https://wolfram.com/xid/0enzj0dsy-iasd6p

Define an auxiliary series as follows:

https://wolfram.com/xid/0enzj0dsy-ozkhdz
The terms of consist of runs of length
of
:

https://wolfram.com/xid/0enzj0dsy-fprcs5


https://wolfram.com/xid/0enzj0dsy-330hra

Also, the sum of each run is , so the sum of the first
terms is
:

https://wolfram.com/xid/0enzj0dsy-xj1erx

The partial sums of are called the harmonic numbers
:

https://wolfram.com/xid/0enzj0dsy-j5vin9

For any positive integer ,
, so
eventually exceeds
and diverges to
:

https://wolfram.com/xid/0enzj0dsy-emvke1

This means the sum of does not converge:

https://wolfram.com/xid/0enzj0dsy-d6xpgk

The divergence is slow, however, requiring more than terms just to get over
:

https://wolfram.com/xid/0enzj0dsy-4mfaij

Recursive Sequences (3)
Compute the limit of a nonlinear recursive sequence that is specified using RSolveValue:

https://wolfram.com/xid/0enzj0dsy-byuq03


https://wolfram.com/xid/0enzj0dsy-hv9hqo

Compute the limit of a trigonometric recursive sequence that is specified using RSolveValue:

https://wolfram.com/xid/0enzj0dsy-i1f8hp


https://wolfram.com/xid/0enzj0dsy-g2hnhx


https://wolfram.com/xid/0enzj0dsy-0sez2


https://wolfram.com/xid/0enzj0dsy-k9i8af

Mathematical Constants (5)
Compute as the limit of a sequence:

https://wolfram.com/xid/0enzj0dsy-oeung

Compute as the limit of a Sum:

https://wolfram.com/xid/0enzj0dsy-eads7b

Compute as the limit of a sequence:

https://wolfram.com/xid/0enzj0dsy-4btt0

Compute EulerGamma using the limit of a sequence:

https://wolfram.com/xid/0enzj0dsy-peilrk

Compute the golden ratio using a sequence involving Fibonacci:

https://wolfram.com/xid/0enzj0dsy-dvtcgb


https://wolfram.com/xid/0enzj0dsy-c5nne

Mathematical Functions (2)
Represent as the limit of a sequence with symbolic entries:

https://wolfram.com/xid/0enzj0dsy-mx9e9

Represent Log[x] as the limit of a sequence:

https://wolfram.com/xid/0enzj0dsy-c3ferw

Stolz–Cesàro Theorem (2)
The Stolz–Cesàro theorem is a discrete version of L'Hôpital's rule, and can be used to compute the limits for ratios of sequences, under suitable conditions. The theorem states that:

https://wolfram.com/xid/0enzj0dsy-e66sks
Verify the Stolz–Cesàro theorem for the sequences defined by:

https://wolfram.com/xid/0enzj0dsy-kd51q

https://wolfram.com/xid/0enzj0dsy-kwn30q
Compute the limit for the ratio of differences:

https://wolfram.com/xid/0enzj0dsy-fddq9l

Obtain the same result directly using DiscreteLimit:

https://wolfram.com/xid/0enzj0dsy-by2rl4

Plot the sequence and the limit:

https://wolfram.com/xid/0enzj0dsy-b6go6h

Verify the Stolz–Cesàro theorem for the sequences defined by:

https://wolfram.com/xid/0enzj0dsy-1b2l

https://wolfram.com/xid/0enzj0dsy-g24mng
Compute the limit for the ratio of differences:

https://wolfram.com/xid/0enzj0dsy-c7rbsy

Obtain the same result directly using DiscreteLimit:

https://wolfram.com/xid/0enzj0dsy-l44eop

Plot the sequence and the limit:

https://wolfram.com/xid/0enzj0dsy-dvkd59

Computational Complexity (3)
An algorithm runtime function is said to be "little-o of
", written
, if
:

https://wolfram.com/xid/0enzj0dsy-mlj236
Similarly, is said to be "little-omega of
", written
, if
:

https://wolfram.com/xid/0enzj0dsy-ofku20

https://wolfram.com/xid/0enzj0dsy-c8jqd3

It is possible for two functions to share neither relationship:

https://wolfram.com/xid/0enzj0dsy-dy4l4s

Moreover, neither relationship even holds between a function and itself:

https://wolfram.com/xid/0enzj0dsy-bv5n1w

Hence, and
define partial orders on the space of algorithm runtimes:

https://wolfram.com/xid/0enzj0dsy-17pwac
if the algorithm associated to
is much faster than the one associated to
for large inputs:

https://wolfram.com/xid/0enzj0dsy-sh3ntl

denotes the opposite relationship:

https://wolfram.com/xid/0enzj0dsy-y0dogg

Note that the two lists are not exactly reversed, because and
are incomparable:

https://wolfram.com/xid/0enzj0dsy-3r0jej

An algorithm runtime function is said to be "big-theta of
", written
, if the following holds:

https://wolfram.com/xid/0enzj0dsy-upxsuv
Consider an algorithm that takes time —a polynomial of degree
—to run:

https://wolfram.com/xid/0enzj0dsy-nvt8l4
The ratio of this function to the monomial goes to the leading coefficient
at infinity:

https://wolfram.com/xid/0enzj0dsy-uk9w7i

Since the limit of the sequence exists, its max and min limits must both equal this value:

https://wolfram.com/xid/0enzj0dsy-elt437

For an algorithmic runtime, must be a positive finite number, so every polynomial algorithm is
:

https://wolfram.com/xid/0enzj0dsy-bbqvi9

Hence, only the leading term in the polynomial is important in determining the runtime for large inputs:

https://wolfram.com/xid/0enzj0dsy-bb05nv

Check the asymptotic complexity of the fast Fourier transform:

https://wolfram.com/xid/0enzj0dsy-jnyodd

Compute the asymptotic complexity:

https://wolfram.com/xid/0enzj0dsy-cd00m5


https://wolfram.com/xid/0enzj0dsy-dvpg6x

Uniform Convergence (2)
At every point , the following sequence of functions
converges to zero:

https://wolfram.com/xid/0enzj0dsy-gg43gi

https://wolfram.com/xid/0enzj0dsy-0x579

The greatest magnitude of each is achieved at
:

https://wolfram.com/xid/0enzj0dsy-5dqqz0

Thus, for any ,
implies that
for all
and the convergence is uniform:

https://wolfram.com/xid/0enzj0dsy-d3t774

As a consequence, the limit of the integrals equals the integral of the limit:

https://wolfram.com/xid/0enzj0dsy-k91wt


https://wolfram.com/xid/0enzj0dsy-bayvi0

At every point , the following sequence of functions
converges to zero:

https://wolfram.com/xid/0enzj0dsy-j49rv9

https://wolfram.com/xid/0enzj0dsy-tisggo

However, the maximum value of , at the point
, diverges as
:

https://wolfram.com/xid/0enzj0dsy-iskd42

This shows that the convergence of the sequence of functions is not uniform:

https://wolfram.com/xid/0enzj0dsy-1dyya

As a consequence, the limit of the integrals does not equal the integral of the limit:

https://wolfram.com/xid/0enzj0dsy-j254qv


https://wolfram.com/xid/0enzj0dsy-oqww1

Miscellaneous Applications (2)
Compute the inverse Laplace transform of using Post's inversion formula:

https://wolfram.com/xid/0enzj0dsy-4xcbf
The inverse Laplace transform of this function is 1:

https://wolfram.com/xid/0enzj0dsy-38yi6

Obtain the same result using InverseLaplaceTransform:

https://wolfram.com/xid/0enzj0dsy-bam80n

Create a table of basic inverse Laplace transforms using Post's inversion formula:

https://wolfram.com/xid/0enzj0dsy-dcxr8

https://wolfram.com/xid/0enzj0dsy-byjhvn

The limit of the probability distribution for a sequence of random variables, if it exists, is called an asymptotic distribution. Obtain the Poisson distribution as an asymptotic distribution for a sequence of binomial distributions in which the mean value λ, the product of the probability and number of trials, is held constant:

https://wolfram.com/xid/0enzj0dsy-y0zk1

Compute the limit of this sequence as the number of trials n->∞:

https://wolfram.com/xid/0enzj0dsy-lfwa7w

Verify that this is the PDF for PoissonDistribution:

https://wolfram.com/xid/0enzj0dsy-dyers1

Plot the distributions for λ=8 and various values of n. Notice that the PDF is zero for all k>n:

https://wolfram.com/xid/0enzj0dsy-88o288

Properties & Relations (15)Properties of the function, and connections to other functions
Multiplicative constants can be moved outside a limit:

https://wolfram.com/xid/0enzj0dsy-h9ydrm

https://wolfram.com/xid/0enzj0dsy-rznz43

If f and g have finite limits, DiscreteLimit is distributive over a sum:

https://wolfram.com/xid/0enzj0dsy-hapf7s

https://wolfram.com/xid/0enzj0dsy-ki9asl

https://wolfram.com/xid/0enzj0dsy-hoyphw

If f and g have finite limits, DiscreteLimit is distributive over a product:

https://wolfram.com/xid/0enzj0dsy-c04ob7

https://wolfram.com/xid/0enzj0dsy-o9zq47

https://wolfram.com/xid/0enzj0dsy-by5j87

Powers can be moved outside a limit:

https://wolfram.com/xid/0enzj0dsy-j63e3f

https://wolfram.com/xid/0enzj0dsy-eh42g1

Function composition and sequence limit operations can be interchanged for continuous functions:

https://wolfram.com/xid/0enzj0dsy-gpdhh3

https://wolfram.com/xid/0enzj0dsy-heu2u0

https://wolfram.com/xid/0enzj0dsy-f1rykc

This need not hold for discontinuous functions:

https://wolfram.com/xid/0enzj0dsy-h8v0uu

https://wolfram.com/xid/0enzj0dsy-0bv4os

The "squeezing" or "sandwich" theorem:

https://wolfram.com/xid/0enzj0dsy-zwywc

This function is bounded by on the positive integers:

https://wolfram.com/xid/0enzj0dsy-wbzb2v

The limit of the bounding functions is zero, which proves the original limit was zero:

https://wolfram.com/xid/0enzj0dsy-zocgex


https://wolfram.com/xid/0enzj0dsy-b1meus

The Stolz–Cesàro rule can be used to find the limit of the ratio of two sequences:

https://wolfram.com/xid/0enzj0dsy-2m2ut

https://wolfram.com/xid/0enzj0dsy-cueok0
Directly solving the limit leads to an indeterminate form of type :

https://wolfram.com/xid/0enzj0dsy-byrenx

The Stolz–Cesàro rule is applied to correctly compute the limit:

https://wolfram.com/xid/0enzj0dsy-d97ufy


https://wolfram.com/xid/0enzj0dsy-b3w8pq

If Limit exists, then so does DiscreteLimit, and they have the same value:

https://wolfram.com/xid/0enzj0dsy-djj1nf

https://wolfram.com/xid/0enzj0dsy-tlom4


https://wolfram.com/xid/0enzj0dsy-bb2v


https://wolfram.com/xid/0enzj0dsy-58ji5s

https://wolfram.com/xid/0enzj0dsy-34gpyb


https://wolfram.com/xid/0enzj0dsy-qtl6qs


https://wolfram.com/xid/0enzj0dsy-uu7jv3

If DiscreteLimit exists, then so does DiscreteMaxLimit, and they have the same value:

https://wolfram.com/xid/0enzj0dsy-ke9m6n

https://wolfram.com/xid/0enzj0dsy-fn6uxd


https://wolfram.com/xid/0enzj0dsy-il9la

If DiscreteLimit exists, then so does DiscreteMinLimit, and they have the same value:

https://wolfram.com/xid/0enzj0dsy-jir5ws

https://wolfram.com/xid/0enzj0dsy-jj4e7e


https://wolfram.com/xid/0enzj0dsy-elmh30

The limit of a difference satisfies :

https://wolfram.com/xid/0enzj0dsy-cakso2

https://wolfram.com/xid/0enzj0dsy-fc8lse

The limit of a ratio satisfies :

https://wolfram.com/xid/0enzj0dsy-bnjdmp

https://wolfram.com/xid/0enzj0dsy-d0xkht

Compute the limit of a sequence using a finite sum:

https://wolfram.com/xid/0enzj0dsy-fes1yz

https://wolfram.com/xid/0enzj0dsy-dsqfi5


https://wolfram.com/xid/0enzj0dsy-dl81lk

Compute the limit of a sequence using a finite product:

https://wolfram.com/xid/0enzj0dsy-ko2dnd

https://wolfram.com/xid/0enzj0dsy-hstyi1


https://wolfram.com/xid/0enzj0dsy-lb879

The limit of a sequence is related to its ZTransform via the final value theorem:

https://wolfram.com/xid/0enzj0dsy-cuuulh
Verify the final value theorem:

https://wolfram.com/xid/0enzj0dsy-i28hy9

Wolfram Research (2017), DiscreteLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteLimit.html.
Text
Wolfram Research (2017), DiscreteLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteLimit.html.
Wolfram Research (2017), DiscreteLimit, Wolfram Language function, https://reference.wolfram.com/language/ref/DiscreteLimit.html.
CMS
Wolfram Language. 2017. "DiscreteLimit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteLimit.html.
Wolfram Language. 2017. "DiscreteLimit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiscreteLimit.html.
APA
Wolfram Language. (2017). DiscreteLimit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteLimit.html
Wolfram Language. (2017). DiscreteLimit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiscreteLimit.html
BibTeX
@misc{reference.wolfram_2025_discretelimit, author="Wolfram Research", title="{DiscreteLimit}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/DiscreteLimit.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_discretelimit, organization={Wolfram Research}, title={DiscreteLimit}, year={2017}, url={https://reference.wolfram.com/language/ref/DiscreteLimit.html}, note=[Accessed: 29-March-2025
]}