WOLFRAM

SystemModelParametricSimulate[model,v,{p1,p2,}]

simulates model for the variable v with parameters pi.

SystemModelParametricSimulate[model,{v1,v2,},{p1,p2,}]

simulates model for multiple variables vi.

SystemModelParametricSimulate[model,vars,tmax,]

simulates from 0 to tmax.

SystemModelParametricSimulate[model,vars,{tmin,tmax},]

simulates from tmin to tmax.

Details and Options

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Get a parametric solution for z with parameter a:

Out[2]=2

Evaluating with a numerical value of a gives an approximate function solution for z:

Out[3]=3

Evaluate at a time t=10:

Out[4]=4

Plot the solutions for several different values of the parameter:

Out[5]=5

Get a parametric solution for z with respect to the initial value of y:

Out[1]=1

Plot the solutions for several different values of the parameter:

Out[2]=2

Show the sensitivity of the variable z to the parameter a:

Out[1]=1

The sensitivity with respect to a increases with time:

Out[2]=2

Scope  (4)Survey of the scope of standard use cases

Models  (4)

Get a parametric solution for variables in a SystemModel with respect to a parameter:

Out[1]=1

Plot the solutions for several different values of the parameter:

Out[2]=2

Get a parametric solution for a variable in an AffineStateSpaceModel with respect to a parameter:

Out[1]=1

Plot the solutions for several different values of the parameter:

Out[2]=2

Get a parametric solution for a variable in a NonlinearStateSpaceModel with respect to a parameter:

Out[1]=1

Plot the solutions for several different values of the parameter:

Out[2]=2

Get a parametric solution for a variable in a DiscreteInputOutputModel with respect to a parameter:

Out[1]=1
Out[2]=2

Plot the solutions for several different values of the parameter:

Out[3]=3

Options  (1)Common values & functionality for each option

Method  (1)

Use Method to choose the underlying solver:

Use the DASSL solver:

Out[2]=2

Use ParametricNDSolve as the solver:

Out[3]=3

ParametricNDSolve is often faster than other solvers:

Out[4]=4
Out[5]=5

Applications  (2)Sample problems that can be solved with this function

Optimize parameters for maximizing a throw by a trebuchet:

Retrieve a parametric function for the thrown distance, varying release time and rope length:

Out[15]=15

Maximize the throwing distance, constraining parameters to reasonable ranges:

Out[4]=4

Simulate using the optimal throwing parameters:

Out[5]=5

Show the distance until the first bounce:

Out[6]=6

Plot the trajectory of the thrown object using a stored plot:

Out[7]=7

Calibrate parameters in a model by comparing to measurement data:

Compute a parametric function for the inertia variable measured:

Out[2]=2

Set up a criteria function for model fitting:

Fit parameters to the test data:

Out[4]=4

Simulate with the fitted parameters:

Show the test data and the calibrated model together:

Out[6]=6

Properties & Relations  (1)Properties of the function, and connections to other functions

SystemModelSimulateSensitivity can be used to easily compute parameter sensitivity:

Plot sensitivity bounds for y and z when varying a by 10%:

Out[2]=2
Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).
Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).

Text

Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).

Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).

CMS

Wolfram Language. 2018. "SystemModelParametricSimulate." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html.

Wolfram Language. 2018. "SystemModelParametricSimulate." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html.

APA

Wolfram Language. (2018). SystemModelParametricSimulate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html

Wolfram Language. (2018). SystemModelParametricSimulate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html

BibTeX

@misc{reference.wolfram_2025_systemmodelparametricsimulate, author="Wolfram Research", title="{SystemModelParametricSimulate}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}", note=[Accessed: 30-March-2025 ]}

@misc{reference.wolfram_2025_systemmodelparametricsimulate, author="Wolfram Research", title="{SystemModelParametricSimulate}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}", note=[Accessed: 30-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_systemmodelparametricsimulate, organization={Wolfram Research}, title={SystemModelParametricSimulate}, year={2022}, url={https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}, note=[Accessed: 30-March-2025 ]}

@online{reference.wolfram_2025_systemmodelparametricsimulate, organization={Wolfram Research}, title={SystemModelParametricSimulate}, year={2022}, url={https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}, note=[Accessed: 30-March-2025 ]}