SystemModelParametricSimulate

SystemModelParametricSimulate[model,v,{p1,p2,}]

simulates model for the variable v with parameters pi.

SystemModelParametricSimulate[model,{v1,v2,},{p1,p2,}]

simulates model for multiple variables vi.

SystemModelParametricSimulate[model,vars,tmax,]

simulates from 0 to tmax.

SystemModelParametricSimulate[model,vars,{tmin,tmax},]

simulates from tmin to tmax.

Details and Options

Examples

open allclose all

Basic Examples  (3)

Get a parametric solution for z with parameter a:

Evaluating with a numerical value of a gives an approximate function solution for z:

Evaluate at a time t=10:

Plot the solutions for several different values of the parameter:

Get a parametric solution for z with respect to the initial value of y:

Plot the solutions for several different values of the parameter:

Show the sensitivity of the variable z to the parameter a:

The sensitivity with respect to a increases with time:

Scope  (4)

Models  (4)

Get a parametric solution for variables in a SystemModel with respect to a parameter:

Plot the solutions for several different values of the parameter:

Get a parametric solution for a variable in an AffineStateSpaceModel with respect to a parameter:

Plot the solutions for several different values of the parameter:

Get a parametric solution for a variable in a NonlinearStateSpaceModel with respect to a parameter:

Plot the solutions for several different values of the parameter:

Get a parametric solution for a variable in a DiscreteInputOutputModel with respect to a parameter:

Plot the solutions for several different values of the parameter:

Options  (1)

Method  (1)

Use Method to choose the underlying solver:

Use the DASSL solver:

Use ParametricNDSolve as the solver:

ParametricNDSolve is often faster than other solvers:

Applications  (2)

Optimize parameters for maximizing a throw by a trebuchet:

Retrieve a parametric function for the thrown distance, varying release time and rope length:

Maximize the throwing distance, constraining parameters to reasonable ranges:

Simulate using the optimal throwing parameters:

Show the distance until the first bounce:

Plot the trajectory of the thrown object using a stored plot:

Calibrate parameters in a model by comparing to measurement data:

Compute a parametric function for the inertia variable measured:

Set up a criteria function for model fitting:

Fit parameters to the test data:

Simulate with the fitted parameters:

Show the test data and the calibrated model together:

Properties & Relations  (1)

SystemModelSimulateSensitivity can be used to easily compute parameter sensitivity:

Plot sensitivity bounds for y and z when varying a by 10%:

Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).

Text

Wolfram Research (2018), SystemModelParametricSimulate, Wolfram Language function, https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html (updated 2022).

CMS

Wolfram Language. 2018. "SystemModelParametricSimulate." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html.

APA

Wolfram Language. (2018). SystemModelParametricSimulate. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html

BibTeX

@misc{reference.wolfram_2024_systemmodelparametricsimulate, author="Wolfram Research", title="{SystemModelParametricSimulate}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_systemmodelparametricsimulate, organization={Wolfram Research}, title={SystemModelParametricSimulate}, year={2022}, url={https://reference.wolfram.com/language/ref/SystemModelParametricSimulate.html}, note=[Accessed: 21-January-2025 ]}