TriangleMeasurement
✖
TriangleMeasurement
Details

- The triangle tri can be given as {p1,p2,p3}, Triangle[{p1,p2,p3}] or Polygon[{p1,p2,p3}].
- The following measurement types can be given:
-
"Area" area "Circumradius" radius of circumcircle {"Exradius",p} radius of excircle opposite vertex p {"ExteriorAngle",p} exterior angle at vertex p {"FullExteriorAngle",p} full exterior angle at vertex p {"Height",p} height of the triangle measured from vertex p "Inradius" radius of incircle {"InteriorAngle",p} interior angle at vertex p "NinePointRadius" radius of nine-point circle "Perimeter" perimeter "Semiperimeter" semiperimeter - In the form {"type",p}, p can be a symbolic point specification in a GeometricScene, or it can be an explicit vertex of the form {x,y}, Point[{x,y}] or the index i of the vertex. When given in the short form "type", the vertex p2 is used.
- In any form that specifies a vertex p, a value of All will return a list of three values corresponding to the vertices.
- TriangleMeasurement can be used with symbolic points in GeometricScene.

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Calculate the semiperimeter of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-u8pc65

Calculate the exradius of a triangle at the specified vertex:

https://wolfram.com/xid/0dqu5z3hhoa-k8g0w0


https://wolfram.com/xid/0dqu5z3hhoa-9bh167


https://wolfram.com/xid/0dqu5z3hhoa-2u24g5

Scope (11)Survey of the scope of standard use cases
Calculate the area of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-uiy0wr

Calculate the area using symbolic coordinates:

https://wolfram.com/xid/0dqu5z3hhoa-suc30t

Calculate the circumradius of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-bwlr9q


https://wolfram.com/xid/0dqu5z3hhoa-77w7e

Calculate the exradius of a triangle at the specified vertex:

https://wolfram.com/xid/0dqu5z3hhoa-inagm6


https://wolfram.com/xid/0dqu5z3hhoa-qytb82

Calculate the exterior angle of a triangle at the specified vertex:

https://wolfram.com/xid/0dqu5z3hhoa-hm0i0g


https://wolfram.com/xid/0dqu5z3hhoa-oa47yd

Calculate the full exterior angle of a triangle at the specified vertex:

https://wolfram.com/xid/0dqu5z3hhoa-mvigs8


https://wolfram.com/xid/0dqu5z3hhoa-grom1y

Calculate the height of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-wt6sea


https://wolfram.com/xid/0dqu5z3hhoa-zqs2np

Calculate the inradius of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-dyb72t


https://wolfram.com/xid/0dqu5z3hhoa-2cuo8o

Calculate the interior angle of a triangle at the specified vertex:

https://wolfram.com/xid/0dqu5z3hhoa-vm2xpd


https://wolfram.com/xid/0dqu5z3hhoa-kfgk0

Calculate the nine-point center of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-7wvxu8


https://wolfram.com/xid/0dqu5z3hhoa-cnrtqy

Calculate the perimeter of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-n3dmpo

Calculate the semiperimeter of a triangle:

https://wolfram.com/xid/0dqu5z3hhoa-biw197

Properties & Relations (11)Properties of the function, and connections to other functions
TriangleMeasurement[{a,b,c},"Area"] is equivalent to Area[Triangle[{a,b,c}]]:

https://wolfram.com/xid/0dqu5z3hhoa-8v4r6a


https://wolfram.com/xid/0dqu5z3hhoa-m7qctv

TriangleConstruct[{a,b,c},"Circumcircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Circumcenter"],TriangleMeasurement[{a,b,c},"Circumradius"]]:

https://wolfram.com/xid/0dqu5z3hhoa-7rw40i


https://wolfram.com/xid/0dqu5z3hhoa-0mjlkq

TriangleConstruct[{a,b,c},"Excircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Excenter"],TriangleMeasurement[{a,b,c},"Exradius"]]:

https://wolfram.com/xid/0dqu5z3hhoa-lh74d4


https://wolfram.com/xid/0dqu5z3hhoa-u3o219

TriangleConstruct[{a,b,c},"ExteriorAngle"] is equivalent to PlanarAngle[{a,b,c},"Exterior"]:

https://wolfram.com/xid/0dqu5z3hhoa-ijtcwp


https://wolfram.com/xid/0dqu5z3hhoa-bahhu9

TriangleConstruct[{a,b,c},"FullExteriorAngle"] is equivalent to PlanarAngle[{a,b,c},"FullExterior"]:

https://wolfram.com/xid/0dqu5z3hhoa-rfkpg9


https://wolfram.com/xid/0dqu5z3hhoa-xdr0ym

TriangleMeasurement[{a,b,c},"Height"] is equivalent to ArcLength[TriangleConstruct[{a,b,c},"Altitude"]]:

https://wolfram.com/xid/0dqu5z3hhoa-h1oil7


https://wolfram.com/xid/0dqu5z3hhoa-729w5r


https://wolfram.com/xid/0dqu5z3hhoa-q9shvz

TriangleConstruct[{a,b,c},"Incircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"Incenter"],TriangleMeasurement[{a,b,c},"Inradius"]]:

https://wolfram.com/xid/0dqu5z3hhoa-5icuh8


https://wolfram.com/xid/0dqu5z3hhoa-kuoj2p

TriangleConstruct[{a,b,c},"InteriorAngle"] is equivalent to PlanarAngle[{a,b,c},"Interior"]:

https://wolfram.com/xid/0dqu5z3hhoa-dmgrdy


https://wolfram.com/xid/0dqu5z3hhoa-t6ev1i

TriangleConstruct[{a,b,c},"NinePointCircle"] is equivalent to Circle[TriangleCenter[{a,b,c},"NinePointCenter"],TriangleMeasurement[{a,b,c},"NinePointRadius"]]:

https://wolfram.com/xid/0dqu5z3hhoa-c0dkwv


https://wolfram.com/xid/0dqu5z3hhoa-oep5t6

TriangleConstruct[{a,b,c},"Perimeter"] is equivalent to Perimeter[Triangle[{a,b,c}]]:

https://wolfram.com/xid/0dqu5z3hhoa-1pmoil


https://wolfram.com/xid/0dqu5z3hhoa-wt2viv

TriangleConstruct[{a,b,c},"Semiperimeter"] is equivalent to Perimeter[Triangle[{a,b,c}]]/2:

https://wolfram.com/xid/0dqu5z3hhoa-nm6n98


https://wolfram.com/xid/0dqu5z3hhoa-kvarjs

Wolfram Research (2019), TriangleMeasurement, Wolfram Language function, https://reference.wolfram.com/language/ref/TriangleMeasurement.html.
Text
Wolfram Research (2019), TriangleMeasurement, Wolfram Language function, https://reference.wolfram.com/language/ref/TriangleMeasurement.html.
Wolfram Research (2019), TriangleMeasurement, Wolfram Language function, https://reference.wolfram.com/language/ref/TriangleMeasurement.html.
CMS
Wolfram Language. 2019. "TriangleMeasurement." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TriangleMeasurement.html.
Wolfram Language. 2019. "TriangleMeasurement." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TriangleMeasurement.html.
APA
Wolfram Language. (2019). TriangleMeasurement. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TriangleMeasurement.html
Wolfram Language. (2019). TriangleMeasurement. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TriangleMeasurement.html
BibTeX
@misc{reference.wolfram_2025_trianglemeasurement, author="Wolfram Research", title="{TriangleMeasurement}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/TriangleMeasurement.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_trianglemeasurement, organization={Wolfram Research}, title={TriangleMeasurement}, year={2019}, url={https://reference.wolfram.com/language/ref/TriangleMeasurement.html}, note=[Accessed: 29-March-2025
]}